909 resultados para Lead-time and set-up optimization
Resumo:
This video shows how to: • Set up Headers for each section, on the outside edge for both odd and even pages • Set up Footers with Page Numbering, on the outside edge for both odd and even pages Although this video shows the steps in Word 2010, the steps are virtually the same in Word 2013. Those using Word 2011 for Mac will find this useful and can find the details of where buttons are located in the Word Section manual.
Resumo:
This video shows how to ensure the document: • has mirror margins that alternate on left and right hand pages • is A4 in size • has margins that are in-line with the regulations • has its major sections starting on the right hand (odd numbered) page Although this video shows how to perform these tasks in Word 2010, they are virtually identical in Word 2013. In Word 2011 for Mac the steps are very similar and precise details can be found in the Word 2011 Sections manual.
Resumo:
Internationally agreed standard protocols for assessing chemical toxicity of contaminants in soil to worms assume that the test soil does not need to equilibrate with the chemical to be tested prior to the addition of the test organisms and that the chemical will exert any toxic effect upon the test organism within 28 days. Three experiments were carried out to investigate these assumptions. The first experiment was a standard toxicity test where lead nitrate was added to a soil in solution to give a range of concentrations. The mortality of the worms and the concentration of lead in the survivors were determined. The LC(50)s for 14 and 28 days were 5311 and 5395 mug(Pb) g(soil)(-1) respectively. The second experiment was a timed lead accumulation study with worms cultivated in soil containing either 3000 or 5000 mug(Pb) g(soil)(-1). The concentration of lead in the worms was determined at various sampling times. Uptake at so' Sol both concentrations was linear with time. Worms in the 5000 mug g(-1) soil accumulated lead at a faster rate (3.16 mug Pb g(tissue)(-1) day(-1)) tiss than those in the 3000 mug g(-1) soil (2.21 mug Pb-tissue g(-1) day(-1)). The third experiment was a timed experiment with worms cultivated in tiss soil containing 7000 mugPb g(soil)(-1). Soil and lead nitrate solution were mixed and stored at 20 degreesC. Worms were added at various times over a 35-day period. The time to death increased from 23 h, when worms were added directly after the lead was added to the soil, to 67 It when worms were added after the soil had equilibrated with the lead for 35 days. In artificially Pb-amended soils the worms accumulate Pb over the duration of their exposure to the Pb. Thus time limited toxicity tests may be terminated before worm body load has reached a toxic level. This could result in under-estimates of the toxicity of Pb to worms. As the equilibration time of artificially amended Pb-bearing soils increases the bioavailability of Pb decreases. Thus addition of worms shortly after addition of Pb to soils may result in the over-estimate of Pb toxicity to worms. The current OECD acute worm toxicity test fails to take these two phenomena into account thereby reducing the environmental relevance of the contaminant toxicities it is used to calculate. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
We investigated the roles of top-down task set and bottom-up stimulus salience for feature-specific attentional capture. Spatially nonpredictive cues preceded search arrays that included a color-defined target. For target-color singleton cues, behavioral spatial cueing effects were accompanied by cueinduced N2pc components, indicative of attentional capture. These effects were only minimally attenuated for nonsingleton target-color cues, underlining the dominance of top-down task set over salience in attentional capture. Nontarget-color singleton cues triggered no N2pc, but instead an anterior N2 component indicative of top-down inhibition. In Experiment 2, inverted behavioral cueing effects of these cues were accompanied by a delayed N2pc to targets at cued locations, suggesting that perceptually salient but task-irrelevant visual events trigger location-specific inhibition mechanisms that can delay subsequent target selection.
Resumo:
Geomagnetic activity has long been known to exhibit approximately 27 day periodicity, resulting from solar wind structures repeating each solar rotation. Thus a very simple near-Earth solar wind forecast is 27 day persistence, wherein the near-Earth solar wind conditions today are assumed to be identical to those 27 days previously. Effective use of such a persistence model as a forecast tool, however, requires the performance and uncertainty to be fully characterized. The first half of this study determines which solar wind parameters can be reliably forecast by persistence and how the forecast skill varies with the solar cycle. The second half of the study shows how persistence can provide a useful benchmark for more sophisticated forecast schemes, namely physics-based numerical models. Point-by-point assessment methods, such as correlation and mean-square error, find persistence skill comparable to numerical models during solar minimum, despite the 27 day lead time of persistence forecasts, versus 2–5 days for numerical schemes. At solar maximum, however, the dynamic nature of the corona means 27 day persistence is no longer a good approximation and skill scores suggest persistence is out-performed by numerical models for almost all solar wind parameters. But point-by-point assessment techniques are not always a reliable indicator of usefulness as a forecast tool. An event-based assessment method, which focusses key solar wind structures, finds persistence to be the most valuable forecast throughout the solar cycle. This reiterates the fact that the means of assessing the “best” forecast model must be specifically tailored to its intended use.
Resumo:
Modular product architectures have generated numerous benefits for companies in terms of cost, lead-time and quality. The defined interfaces and the module’s properties decrease the effort to develop new product variants, and provide an opportunity to perform parallel tasks in design, manufacturing and assembly. The background of this thesis is that companies perform verifications (tests, inspections and controls) of products late, when most of the parts have been assembled. This extends the lead-time to delivery and ruins benefits from a modular product architecture; specifically when the verifications are extensive and the frequency of detected defects is high. Due to the number of product variants obtained from the modular product architecture, verifications must handle a wide range of equipment, instructions and goal values to ensure that high quality products can be delivered. As a result, the total benefits from a modular product architecture are difficult to achieve. This thesis describes a method for planning and performing verifications within a modular product architecture. The method supports companies by utilizing the defined modules for verifications already at module level, so called MPV (Module Property Verification). With MPV, defects are detected at an earlier point, compared to verification of a complete product, and the number of verifications is decreased. The MPV method is built up of three phases. In Phase A, candidate modules are evaluated on the basis of costs and lead-time of the verifications and the repair of defects. An MPV-index is obtained which quantifies the module and indicates if the module should be verified at product level or by MPV. In Phase B, the interface interaction between the modules is evaluated, as well as the distribution of properties among the modules. The purpose is to evaluate the extent to which supplementary verifications at product level is needed. Phase C supports a selection of the final verification strategy. The cost and lead-time for the supplementary verifications are considered together with the results from Phase A and B. The MPV method is based on a set of qualitative and quantitative measures and tools which provide an overview and support the achievement of cost and time efficient company specific verifications. A practical application in industry shows how the MPV method can be used, and the subsequent benefits
Resumo:
We consider free time optimal control problems with pointwise set control constraints u(t) ∈ U(t). Here we derive necessary conditions of optimality for those problem where the set U(t) is defined by equality and inequality control constraints. The main ingredients of our analysis are a well known time transformation and recent results on necessary conditions for mixed state-control constraints. ©2010 IEEE.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The constant search for improvement and survival of the companies makes essential the utilization of cost reduction strategies and resources optimization. This study had as its objective the utilization of Lean Manufacturing tools for the repair process lead time reduction, in a car audio manufacturer. Performing an action research, the major problems were studied, such as the potential causes and the possible improvement activities, using the DMAIC methodology. An action plan was developed for all involved processes and, as a result, the objective was reached by making a direct impact on the customers’ satisfaction and adding a competitive differential for the company
Resumo:
This paper addresses the m-machine no-wait flow shop problem where the set-up time of a job is separated from its processing time. The performance measure considered is the total flowtime. A new hybrid metaheuristic Genetic Algorithm-Cluster Search is proposed to solve the scheduling problem. The performance of the proposed method is evaluated and the results are compared with the best method reported in the literature. Experimental tests show superiority of the new method for the test problems set, regarding the solution quality. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The aim of this thesis was to study the effects of extremely low frequency (ELF) electromagnetic magnetic fields on potassium currents in neural cell lines ( Neuroblastoma SK-N-BE ), using the whole-cell Patch Clamp technique. Such technique is a sophisticated tool capable to investigate the electrophysiological activity at a single cell, and even at single channel level. The total potassium ion currents through the cell membrane was measured while exposing the cells to a combination of static (DC) and alternate (AC) magnetic fields according to the prediction of the so-called â Ion Resonance Hypothesis â. For this purpose we have designed and fabricated a magnetic field exposure system reaching a good compromise between magnetic field homogeneity and accessibility to the biological sample under the microscope. The magnetic field exposure system consists of three large orthogonal pairs of square coils surrounding the patch clamp set up and connected to the signal generation unit, able to generate different combinations of static and/or alternate magnetic fields. Such system was characterized in term of field distribution and uniformity through computation and direct field measurements. No statistically significant changes in the potassium ion currents through cell membrane were reveled when the cells were exposed to AC/DC magnetic field combination according to the afore mentioned âIon Resonance Hypothesisâ.
Resumo:
An accurate and sensitive species-specific GC-ICP-IDMS (gas chromatography inductively coupled plasma isotope dilution mass spectrometry) method for the determination of trimethyllead and a multi-species-specific GC-ICP-IDMS method for the simultaneous determination of trimethyllead, methylmercury, and butyltins in biological and environmental samples were developed. They allow the determination of corresponding elemental species down to the low ng g-1 range. The developed synthesis scheme for the formation of isotopically labeled Me3206Pb+ can be used for future production of this spike. The novel extraction technique, stir bar sorptive extraction (SBSE), was applied for the first time in connection with species-specific isotope dilution GC-ICP-MS for the determination of trimethyllead, methylmercury and butyltins. The results were compared with liquid-liquid extraction. The developed methods were validated by the analysis of certified reference materials. The liquid-liquid extraction GC-ICP-IDMS method was applied to seafood samples purchased from a supermarket. The methylated lead fraction in these samples, correlated to total lead, varied in a broad range of 0.01-7.6 %. On the contrary, the fraction of methylmercury is much higher, normally in the range of 80-98 %. The highest methylmercury content of up to 12 µg g-1 has been determined in shark samples, an animal which is at the end of the marine food chain, whereas in other seafood samples a MeHg+ content of less than 0.2 µg g-1 was found. Butyltin species could only be determined in samples, where anthropogenic contaminations must be assumed. This explains the observed broad variation of the butylated tin fraction in the range of <0.3-49 % in different seafood samples. Because all isotope-labelled spike compounds, except trimethyllead, are commercially available, the developed multi-species-specific GC-ICP-IDMS method has a high potential in future for routine analysis.
Resumo:
This study is focused on radio-frequency inductively coupled thermal plasma (ICP) synthesis of nanoparticles, combining experimental and modelling approaches towards process optimization and industrial scale-up, in the framework of the FP7-NMP SIMBA European project (Scaling-up of ICP technology for continuous production of Metallic nanopowders for Battery Applications). First the state of the art of nanoparticle production through conventional and plasma routes is summarized, then results for the characterization of the plasma source and on the investigation of the nanoparticle synthesis phenomenon, aiming at highlighting fundamental process parameters while adopting a design oriented modelling approach, are presented. In particular, an energy balance of the torch and of the reaction chamber, employing a calorimetric method, is presented, while results for three- and two-dimensional modelling of an ICP system are compared with calorimetric and enthalpy probe measurements to validate the temperature field predicted by the model and used to characterize the ICP system under powder-free conditions. Moreover, results from the modeling of critical phases of ICP synthesis process, such as precursor evaporation, vapour conversion in nanoparticles and nanoparticle growth, are presented, with the aim of providing useful insights both for the design and optimization of the process and on the underlying physical phenomena. Indeed, precursor evaporation, one of the phases holding the highest impact on industrial feasibility of the process, is discussed; by employing models to describe particle trajectories and thermal histories, adapted from the ones originally developed for other plasma technologies or applications, such as DC non-transferred arc torches and powder spherodization, the evaporation of micro-sized Si solid precursor in a laboratory scale ICP system is investigated. Finally, a discussion on the role of thermo-fluid dynamic fields on nano-particle formation is presented, as well as a study on the effect of the reaction chamber geometry on produced nanoparticle characteristics and process yield.
Resumo:
Nella presente tesi è stato sviluppato un sistema di acquisizione automatico finalizzato allo studio del breast microwave imaging. Le misure sono state eseguite in configurazione monostatica, in cui viene acquisito un segnale da diverse posizioni lungo il perimetro dell’area di indagine. A questo scopo, è stato installato un motore ad alta precisione che permette la rotazione del fantoccio e l’esecuzione automatica delle misure da un numero di posizioni fissato. Per automatizzare il processo di acquisizione, è stato inoltre sviluppato appositamente un software in ambiente LabView. Successivamente, è stata eseguita una intensa sessione di misure finalizzate alla caratterizzazione del sistema sviluppato al variare delle condizioni di misura. Abbiamo quindi utilizzato dei fantocci di tumore di diverse dimensioni e permittività elettrica per studiare la sensibilità della strumentazione in condizione di mezzo omogeneo. Dall’analisi delle ricostruzioni multifrequenza effettuate tramite diversi algoritmi di tipo TR-MUSIC sul range di frequenze selezionato, abbiamo notato che il tumore è ricostruito correttamente in tutti gli scenari testati. Inoltre, abbiamo creato un ulteriore fantoccio per simulare la presenza di una disomogeneità nel dominio di imaging. In questo caso, abbiamo studiato le performances del sistema di acquisizione al variare della posizione del tumore, le cui caratteristiche sono state fissate, e della permittività associata al fantoccio. Dall’analisi dei risultati appare che le performances di ricostruzione sono condizionate dalla presenza della disomogeneità, in modo particolare se il tumore è posizionato all’interno di essa. Infine, abbiamo studiato delle performance di due algoritmi di ricostruzione 3D: uno di essi è basato sulla sovrappo- sizione tomografica e sfrutta metodi di interpolazione, l’altro si basa sull’utilizzo di un propagatore 3D per il dipolo Hertziano in approssimazione scalare.