983 resultados para Kurzweil-Henstock integral
Resumo:
Developments of surgical attachments for bone-anchored prostheses are slowly but surely winning over the initial disbelief in the orthopedic community. Clearly, this option is becoming accessible to a wide range of individuals with limb loss. Seminal studies have demonstrated that the pioneering procedure relying on screw-type fixation engenders major clinical benefits and acceptable safety. The surgical procedure for press-fit implants, such as the Integral-Leg-Prosthesis (ILP) has been described Dr Aschoff and his team. Some clinical benefits of press-fit implants have been also established. Here, his team is once again taking a leading role by sharing the progression over 15 years of the rate of deep infections for 69 individuals with transfemoral amputation fitted with three successive refined versions of the ILP. By definition, a double-blind randomized clinical trial to test the effect of different fixation’s design is difficult. Alternatively, Juhnke and colleagues are reporting the outcomes of action-research study for a cohort of participants. The first and foremost important outcome of this study is the confirmation that the current design of the IPL and rehabilitation program are altogether leading to an acceptable rate of deep infection and other adverse events (e.g., structural failure of implant, periprosthetic factures). This study is also providing a strong insight onto the effect of major phases in redesign of an implant on the risk of infection. This is an important reminder that the development of a successful osseointegrated implant is unlikely to be immediate but the results of a learning curve made of empirical and sequential changes led by a reflective clinical practice. Clearly, this study provided better understanding of the safety of the ILP surgical and rehabilitation procedure while establishing standards and benchmark data for future studies focusing on design and infection of press-fit implants. Complementary observations of relationship between infection and cofounders such as loading of the prosthesis and prosthetic components used would be beneficial.Further definitive evidences of the clinical benefits with the latest design would be valuable, although an increase in health related quality of life and functional outcomes are likely to be confirmed. Altogether, the authors are providing compelling evidence that bone-anchored attachments particularly those relying on press-fit implants are an established alternative to socket prostheses.
Resumo:
It is shown that the a;P?lication of the Poincare-Bertrand fcm~ulaw hen made in a suitable manner produces the s~lutiano f certain singular integral equations very quickly, thc method of arriving at which, otherwise, is too complicaled. Two singular integral equations are considered. One of these quaiions is with a Cauchy-tyge kcrnel arid the other is an equalion which appears in the a a w guide theory and the theory of dishcations. Adifferent approach i? alw made here to solve the singular integralquation> of the waveguide theor? ind this i ~ v o l v eth~e use of the inversion formula of the Cauchy-type singular integral equahn and dudion to a system of TIilberl problems for two unknowns which can be dwupled wry easily to obi& tbe closed form solutim of the irilegral equatlou at band. The methods of the prescnt paper avoid all the complicaled approaches of solving the singular integral equaticn of the waveguide theory knowr todate.
Resumo:
Some continuity and differentiability properties of the eigenvalues and eigenfunctions of finite section normal integral operators are proved. These are the extension of corresponding results for symmetric operators ([4.], 554–566; K. B. Athreya and R. Vittal Rao, to appear; [10.], 463–471.
Resumo:
The Kac-Akhiezer formula for finite section normal Wiener-Hopf integral operators is proved. This is an extension of the corresponding result for symmetric operator [2, 3, 4, 5, 6, 7].
Resumo:
Can certain soliton states, with half integral expectation value of charge, be also eigenstates of charge X with half integral eigenvalue? It can be so only with a somewhat sophisticated definition of charge.
Resumo:
The nonlinear singular integral equation of transonic flow is examined, noting that standard numerical techniques are not applicable in solving it. The difficulties in approximating the integral term in this expression were solved by special methods mitigating the inaccuracies caused by standard approximations. It was shown how the infinite domain of integration can be reduced to a finite one; numerical results were plotted demonstrating that the methods proposed here improve accuracy and computational economy.
Resumo:
The classical problem of surface water-wave scattering by two identical thin vertical barriers submerged in deep water and extending infinitely downwards from the same depth below the mean free surface, is reinvestigated here by an approach leading to the problem of solving a system of Abel integral equations. The reflection and transmission coefficients are obtained in terms of computable integrals. Known results for a single barrier are recovered as a limiting case as the separation distance between the two barriers tends to zero. The coefficients are depicted graphically in a number of figures which are identical with the corresponding figures given by Jarvis (J Inst Math Appl 7:207-215, 1971) who employed a completely different approach involving a Schwarz-Christoffel transformation of complex-variable theory to solve the problem.
Resumo:
The third-kind linear integral equation Image where g(t) vanishes at a finite number of points in (a, b), is considered. In general, the Fredholm Alternative theory [[5.]] does not hold good for this type of integral equation. However, imposing certain conditions on g(t) and K(t, t′), the above integral equation was shown [[1.], 49–57] to obey a Fredholm-type theory, except for a certain class of kernels for which the question was left open. In this note a theory is presented for the equation under consideration with some additional assumptions on such kernels.
Resumo:
Mit einer direkten Methode, bei der der Erdelyi-Kober- und der modifizierte Hankel-Operator Anwendung finden, werden gewisse Systeme aus zwei bzw. drei Paaren dualer Integralgleichungen mit Bessel-Kernen in geschlossener Form gelöst. Für bestimmte Funktionenklassen und Ordnungen der Bessel-Funktionen ist die Vorgehensweise angebrachter und geeigneter als die bereits existierenden Methoden.
Resumo:
The paper describes a method to determine the integral fringe order associated with a fractional fringe value that is measured using Tardy or other similar compensators. The method makes use of two different wavelengths of light to determine the fractional fringe values. Further, it does not assume the independence of the material fringe constant on the wavelength of light used. From these measured fractional fringe values, the associated integral fringe order is determined. A method to construct a ready-reckoner table is also described which helps to identify the integral fringe order from any two measured fractional fringe values.
Resumo:
The monograph dissertation deals with kernel integral operators and their mapping properties on Euclidean domains. The associated kernels are weakly singular and examples of such are given by Green functions of certain elliptic partial differential equations. It is well known that mapping properties of the corresponding Green operators can be used to deduce a priori estimates for the solutions of these equations. In the dissertation, natural size- and cancellation conditions are quantified for kernels defined in domains. These kernels induce integral operators which are then composed with any partial differential operator of prescribed order, depending on the size of the kernel. The main object of study in this dissertation being the boundedness properties of such compositions, the main result is the characterization of their Lp-boundedness on suitably regular domains. In case the aforementioned kernels are defined in the whole Euclidean space, their partial derivatives of prescribed order turn out to be so called standard kernels that arise in connection with singular integral operators. The Lp-boundedness of singular integrals is characterized by the T1 theorem, which is originally due to David and Journé and was published in 1984 (Ann. of Math. 120). The main result in the dissertation can be interpreted as a T1 theorem for weakly singular integral operators. The dissertation deals also with special convolution type weakly singular integral operators that are defined on Euclidean spaces.
Resumo:
We study integral representations of Gaussian processes with a pre-specified law in terms of other Gaussian processes. The dissertation consists of an introduction and of four research articles. In the introduction, we provide an overview about Volterra Gaussian processes in general, and fractional Brownian motion in particular. In the first article, we derive a finite interval integral transformation, which changes fractional Brownian motion with a given Hurst index into fractional Brownian motion with an other Hurst index. Based on this transformation, we construct a prelimit which formally converges to an analogous, infinite interval integral transformation. In the second article, we prove this convergence rigorously and show that the infinite interval transformation is a direct consequence of the finite interval transformation. In the third article, we consider general Volterra Gaussian processes. We derive measure-preserving transformations of these processes and their inherently related bridges. Also, as a related result, we obtain a Fourier-Laguerre series expansion for the first Wiener chaos of a Gaussian martingale. In the fourth article, we derive a class of ergodic transformations of self-similar Volterra Gaussian processes.
Resumo:
Abstract is not available.