174 resultados para Isoprenoid
Resumo:
In Plasmodium falciparum, the formation of isopentenyl diphosphate and dimethylallyl diphosphate, central intermediates in the biosynthesis of isoprenoids, occurs via the methylerythritol phosphate (MEP) pathway. Fosmidomycin is a specific inhibitor of the second enzyme of the MEP pathway, 1-deoxy-D-xylulose-5-phosphate reductoisomerase. We analyzed the effect of fosmidomycin on the levels of each intermediate and its metabolic requirement for the isoprenoid biosynthesis, such as dolichols and ubiquinones, throughout the intraerythrocytic cycle of P. falciparum. The steady-state RNA levels of the MEP pathway-associated genes were quantified by real-time polymerase chain reaction and correlated with the related metabolite levels. Our results indicate that MEP pathway metabolite peak precede maximum transcript abundance during the intraerythrocytic cycle. Fosmidomycin-treatment resulted in a decrease of the intermediate levels in the MEP pathway as well as in ubiquinone and dolichol biosynthesis. The MEP pathway associated transcripts were modestly altered by the drug, indicating that the parasite is not strongly responsive at the transcriptional level. This is the first study that compares the effect of fosmidomycin on the metabolic and transcript profiles in P. falciparum, which has only the MEP pathway for isoprenoid biosynthesis.
Resumo:
Plants naturally produce the lipid-derived polyester cutin, which is found in the plant cuticle that is deposited at the outermost extracellular matrix of the epidermis covering nearly all aboveground tissues. Being at the interface between the cell and the external environment, cutin and the cuticle play important roles in the protection of plants from several stresses. A number of enzymes involved in the synthesis of cutin monomers have recently been identified, including several P450s and one acyl-CoA synthetase, thus representing the first steps toward the understanding of polyester formation and, potentially, polyester engineering to improve the tolerance of plants to stresses, such as drought, and for industrial applications. However, numerous processes underlying cutin synthesis, such as a controlled polymerization, still remain elusive. Suberin is a second polyester found in the extracellular matrix, most often synthesized in root tissues and during secondary growth. Similar to cutin, the function of suberin is to seal off the respective tissue to inhibit water loss and contribute to resistance to pathogen attack. Being the main constituent of cork, suberin is a plant polyester that has already been industrially exploited. Genetic engineering may be worth exploring in order to change the polyester properties for either different applications or to increase cork production in other species. Polyhydroxyalkanoates (PHAs) are attractive polyesters of 3-hydroxyacids because of their properties as bioplastics and elastomers. Although PHAs are naturally found in a wide variety of bacteria, biotechnology has aimed at producing these polymers in plants as a source of cheap and renewable biodegradable plastics. Synthesis of PHA containing various monomers has been demonstrated in the cytosol, plastids, and peroxisomes of plants. Several biochemical pathways have been modified in order to achieve this, including the isoprenoid pathway, the fatty acid biosynthetic pathway, and the fatty acid β-oxidation pathway. PHA synthesis has been demonstrated in a number of plants, including monocots and dicots, and up to 40% PHA per gram dry weight has been demonstrated in Arabidopsis thaliana. Despite some successes, production of PHA in crop plants remains a challenging project. PHA synthesis at high level in vegetative tissues, such as leaves, is associated with chlorosis and reduced growth. The challenge for the future is to succeed in synthesis of PHA copolymers with a narrow range of monomer compositions, at levels that do not compromise plant productivity. This goal will undoubtedly require a deeper understanding of plant biochemical pathways and how carbon fluxes through these pathways can be manipulated, areas where plant "omics" can bring very valuable contributions.
Resumo:
BACKGROUND: Recent evidence indicates that zoledronate, a nitrogen-containing bisphosphonate used to treat conditions of increased bone resorption, may have anti-angiogenic activity. The endothelial cells signaling events modulated by zoledronate remain largely elusive. OBJECTIVES: The aim of this work was to identify signaling events suppressed by zoledronate in endothelial cells and responsible for some of its biological effects. METHODS: Human umbilical vein endothelial cells (HUVEC) were exposed to zoledronate, isoprenoid analogs (i.e. farnesol and geranylgeraniol) and various inhibitors of signaling, and the effect on adhesion, survival, migration, actin cytoskeleton and signaling events characterized. RESULTS: Zoledronate reduced Ras prenylation, Ras and RhoA translocation to the membrane, and sustained ERK1/2 phosphorylation and tumor necrosis factor (TNF) induced JNK phosphorylation. Isoprenoid analogs attenuated zoledronate effects on HUVEC adhesion, actin stress fibers and focal adhesions, migration and survival. Isoprenoid analogs also restored Ras prenylation, RhoA translocation to the membrane, sustained FAK and ERK1/2 phosphorylation and prevented suppression of protein kinase B (PKB) and JNK phosphorylation in HUVEC exposed to TNF in the presence of zoledronate. Pharmacological inhibition of Rock, a RhoA target mediating actin fiber formation, phosphatidylinositol 3-kinase, an activator of PKB, MEK1/2, an activator of ERK1/2, and JNK, recapitulated individual zoledronate effects, consistent with the involvement of these molecules and pathways and their inhibition in the zoledronate effects. CONCLUSIONS: This work has demonstrated that zoledronate inhibits HUVEC adhesion, survival, migration and actin stress fiber formation by interfering with protein prenylation and has identified ERK1/2, JNK, Rock, FAK and PKB as kinases affected by zoledronate in a prenylation-dependent manner.
Resumo:
Plants naturally produce the lipid-derived polyester cutin, which is found in the plant cuticle that is deposited at the outermost extracellular matrix of the epidermis covering nearly all aboveground tissues. Being at the interface between the cell and the external environment, cutin and the cuticle play important roles in the protection of plants from several stresses. A number of enzymes involved in the synthesis of cutin monomers have recently been identified, including several P450s and one acyl-CoA synthetase, thus representing the first steps toward the understanding of polyester formation and, potentially, polyester engineering to improve the tolerance of plants to stresses, such as drought, and for industrial applications. However, numerous processes underlying cutin synthesis, such as a controlled polymerization, still remain elusive. Suberin is a second polyester found in the extracellular matrix, most often synthesized in root tissues and during secondary growth. Similar to cutin, the function of suberin is to seal off the respective tissue to inhibit water loss and contribute to resistance to pathogen attack. Being the main constituent of cork, suberin is a plant polyester that has already been industrially exploited. Genetic engineering may be worth exploring in order to change the polyester properties for either different applications or to increase cork production in other species. Polyhydroxyalkanoates (PHAs) are attractive polyesters of 3-hydroxyacids because of their properties as bioplastics and elastomers. Although PHAs are naturally found in a wide variety of bacteria, biotechnology has aimed at producing these polymers in plants as a source of cheap and renewable biodegradable plastics. Synthesis of PHA containing various monomers has been demonstrated in the cytosol, plastids, and peroxisomes of plants. Several biochemical pathways have been modified in order to achieve this, including the isoprenoid pathway, the fatty acid biosynthetic pathway, and the fatty acid β-oxidation pathway. PHA synthesis has been demonstrated in a number of plants, including monocots and dicots, and up to 40% PHA per gram dry weight has been demonstrated in Arabidopsis thaliana. Despite some successes, production of PHA in crop plants remains a challenging project. PHA synthesis at high level in vegetative tissues, such as leaves, is associated with chlorosis and reduced growth. The challenge for the future is to succeed in synthesis of PHA copolymers with a narrow range of monomer compositions, at levels that do not compromise plant productivity. This goal will undoubtedly require a deeper understanding of plant biochemical pathways and how carbon fluxes through these pathways can be manipulated, areas where plant "omics" can bring very valuable contributions.
Resumo:
The enzyme HMG-CoA reductase (HMGR) has a key regulatory role in the mevalonate pathway for isoprenoid biosynthesis, critical not only for normal plant development, but also for the adaptation to demanding environmental conditions. Consistent with this notion, plant HMGR is modulated by many diverse endogenous signals and external stimuli. Protein phosphatase 2A (PP2A) is involved in auxin, abscisic acid, ethylene and brassinosteroid signaling and now emerges as a positive and negative multilevel regulator of plant HMGR, both during normal growth and in response to a variety of stress conditions. The interaction with HMGR is mediated by B" regulatory subunits of PP2A, which are also calcium binding proteins. The new discoveries uncover the potential of PP2A to integrate developmental and calcium-mediated environmental signals in the control of plant HMGR.
Resumo:
Plants synthesize a myriad of isoprenoid products that are required both for essential constitutive processes and for adaptive responses to the environment. The enzyme 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) catalyzes a key regulatory step of the mevalonate pathway for isoprenoid biosynthesis and is modulated by many endogenous and external stimuli. In spite of that, no protein factor interacting with and regulating plant HMGR in vivo has been described so far. Here, we report the identification of two B99 regulatory subunits of protein phosphatase 2A (PP2A), designated B99a and B99b, that interact with HMGR1S and HMGR1L, the major isoforms of Arabidopsis thaliana HMGR. B99a and B99b are Ca2+ binding proteins of the EF-hand type. We show that HMGR transcript, protein, and activity levels are modulated by PP2A in Arabidopsis. When seedlings are transferred to salt-containing medium, B99a and PP2A mediate the decrease and subsequent increase of HMGR activity, which results from a steady rise of HMGR1-encoding transcript levels and an initial sharper reduction of HMGR protein level. In unchallenged plants, PP2A is a posttranslational negative regulator of HMGR activity with the participation of B99b. Our data indicate that PP2A exerts multilevel control on HMGR through the fivemember B99 protein family during normal development and in response to a variety of stress conditions.
Resumo:
The synthesis of 1-deoxy-D-xylulose 5-phosphate (DXP), catalyzed by the enzyme DXP synthase (DXS), represents a key regulatory step of the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis. In plants DXS is encoded by small multigene families that can be classified into, at least, three specialized subfamilies. Arabidopsis thaliana contains three genes encoding proteins with similarity to DXS, including the well-known DXS1/CLA1 gene, which clusters within subfamily I. The remaining proteins, initially named DXS2 and DXS3, have not yet been characterized. Here we report the expression and functional analysis of A. thaliana DXS2. Unexpectedly, the expression of DXS2 failed to rescue Escherichia coli and A. thaliana mutants defective in DXS activity. Coherently, we found that DXS activity was negligible in vitro, being renamed as DXL1 following recent nomenclature recommendation. DXL1 is targeted to plastids as DXS1, but shows a distinct expression pattern. The phenotypic analysis of a DXL1 defective mutant revealed that the function of the encoded protein is not essential for growth and development. Evolutionary analyses indicated that DXL1 emerged from DXS1 through a recent duplication apparently specific of the Brassicaceae lineage. Divergent selective constraints would have affected a significant fraction of sites after diversification of the paralogues. Furthermore, amino acids subjected to divergent selection and likely critical for functional divergence through the acquisition of a novel, although not yet known, biochemical function, were identified. Our results provide with the first evidences of functional specialization at both the regulatory and biochemical level within the plant DXS family.
Resumo:
β-ionone (βI), a cyclic isoprenoid, and geraniol (GO), an acyclic monoterpene, represent a promising class of dietary chemopreventive agents against cancer, whose combination could result in synergistic anticarcinogenic effects. The chemopreventive activities of βI and GO were evaluated individually or in combination during colon carcinogenesis induced by dimethylhydrazine in 48 3-week-old male Wistar rats (12 per group) weighing 40-50 g. Animals were treated for 9 consecutive weeks with βI (16 mg/100 g body weight), GO (25 mg/100 g body weight), βI combined with GO or corn oil (control). Number of total aberrant crypt foci (ACF) and of ACF ≥4 crypts in the distal colon was significantly lower in the GO group (66 ± 13 and 9 ± 2, respectively) compared to control (102 ± 9 and 17 ± 3) and without differences in the βI (91 ± 11 and 14 ± 3) and βI+GO groups (96 ± 5 and 19 ± 2). Apoptosis level, identified by classical apoptosis morphological criteria, in the distal colon was significantly higher in the GO group (1.64 ± 0.06 apoptotic cells/mm²) compared to control (0.91 ± 0.07 apoptotic cells/mm²). The GO group presented a 0.7-fold reduction in Bcl-2 protein expression (Western blot) compared to control. Colonic mucosa concentrations of βI and GO (gas chromatography/mass spectrometry) were higher in the βI and GO groups, respectively, compared to the control and βI+GO groups. Therefore, GO, but not βI, represents a potential chemopreventive agent in colon carcinogenesis. Surprisingly, the combination of isoprenoids does not represent an efficient chemopreventive strategy.
Resumo:
Vegetables are critical for human health as they are a source of multiple vitamins including vitamin E (VTE). In plants, the synthesis of VTE compounds, tocopherol and tocotrienol, derives from precursors of the shikimate and methylerythritol phosphate pathways. Quantitative trait loci (QTL) for alpha-tocopherol content in ripe fruit have previously been determined in an Solanum pennellii tomato introgression line population. In this work, variations of tocopherol isoforms (alpha, beta, gamma, and delta) in ripe fruits of these lines were studied. In parallel all tomato genes structurally associated with VTE biosynthesis were identified and mapped. Previously identified VTE QTL on chromosomes 6 and 9 were confirmed whilst novel ones were identified on chromosomes 7 and 8. Integrated analysis at the metabolic, genetic and genomic levels allowed us to propose 16 candidate loci putatively affecting tocopherol content in tomato. A comparative analysis revealed polymorphisms at nucleotide and amino acid levels between Solanum lycopersicum and S. pennellii candidate alleles. Moreover, evolutionary analyses showed the presence of codons evolving under both neutral and positive selection, which may explain the phenotypic differences between species. These data represent an important step in understanding the genetic determinants of VTE natural variation in tomato fruit and as such in the ability to improve the content of this important nutriceutical.
Resumo:
The isoprenoid metabolic pathway in protozoa of the Leishmania genus exhibits distinctive characteristics. These parasites, as well as other members of the Trypanosomatidae family, synthesize ergosterol, instead of cholesterol, as the main membrane sterol lipid. Leishmania has been shown to utilize leucine, instead of acetate as the main precursor for sterol biosynthesis. While mammalian dolichols are molecules containing 15-23 isoprene units, Leishmania amazonensis promastigotes synthesize dolichol of 11 and 12 units. In this paper, we show that the intracellular stages of L. amazonensis, amastigotes, synthesize mainly polyprenols of 9 isoprene units, instead of dolichol. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The eventual chemopreventive effect of squalene (SQ), a triterpene present in olive oil, was evaluated when administered to Wistar rats during a period comprising the initiation and selection/promotion of the resistant hepatocyte (RH) model of hepatocarcinogenesis. During 8 consecutive wk, animals received by gavage SQ (100 or 150 mg/100 g body weight) dissolved in corn oil (CO) daily. Animals treated with only CO and submitted to the RH model were used as controls. Treatments with SQ did not result in inhibition of macroscopically visible hepatocyte nodules (P > 0.05) or of hepatic placental glutathione S-transferase-positive preneoplastic lesions (PNL; P > 0.05). Hepatic cell proliferation and apoptosis indexes were not different (P > 0.05) among the different experimental groups, both regarding PNL and surrounding normal tissue areas. There were no significant differences (P > 0.05) among comets presented by rats treated with the two SQ doses or with CO. on the other hand, SQ increased total plasma cholesterol levels when administered at both doses (P < 0.05). This indicates that the isoprenoid was absorbed. Thus, SQ did not present chemopreventive activity during hepatocarcinogenesis and had a hypercholesterolemic effect, suggesting caution when considering its use in chemoprevention of cancer.
Resumo:
A. suite of 10 different marine evaporitic oil samples from Sergipe-Alagoas Basin, Brazil was studied for its biomarker content, in particular its acidic constituents. The oils showed different molecular distributions and relative abundances of n-alkanoic, isoprenoid and hopanoic acids. The observed differences were assigned to the incorporation of immature organic matter in the oils and fractionation along the migration pathway. The diagenetic precursor functionality (alcohol/ether or acid) was proposed based on the comparison of the relative abundances of the neutral and acidic biomarkers (hopanoids, isoprenoids, alkyl-steranes, monoaromatic alkyl-steroids). In the acidic fraction, 3 series of steroid-alkanoic acids and monoaromatic steroid-alkanoic acids (steroid-methanoic, ethanoic and propanoic acids and monoaromatic steroid-methanoic, ethanoic and propanoic acids) were detected, while in the neutral fraction only 2 series of each corresponding class could be observed (methyl and ethyl-steranes and monoaromatic methyl and ethyl-steroids). These carbon shifts suggest that decarboxylation is an important process in the formation of the alkyrsteranes and monoaromatic alkyl-steroids, and we infer that carboxylic acids are the diagenetic precursors of these classes of compounds. When alcohol or ether are the diagenetic precursors (isoprenoids and hopanoids), no significant differences in the molecular distributions between neutral and acidic fractions were observed. (C) 2000 Elsevier B.V. Ltd. All rights reserved.
Resumo:
The chemical investigation of the leaves of Sorocea bomplandii Baillon (Moraceae) led to the identification of pentacyclic triterpenes, fatty acid ester and isoprenoids. Chromatographyc comparison between the infusion S. bomplandii with that of Maytenus aquifolium - a Celastraceae with proved antiulcer activity - has shown that they have different compositions: the first one is based on sugars and the last one is based on flavonoid glycosides.