968 resultados para Intestinal ischemia and reperfusion


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Renal ischemia and reperfusion injury (IRI) is considered an inflammatory syndrome. To move forward in its pathogenesis, we exploited the role of several cytokines on renal damages triggered by IRI. Specifically to evaluate the role of Th1 immune profile in this system, IL-12, IFN-gamma, and IFN-gamma/IL-12 deficient (KO) mice on C57BL/6 background and their controls were subjected to IRI. In each group, blood and kidney samples were harvested. Renal function was evaluated by serum creatinine and renal morphometric analyses. Gene expression of IL-6 and HO-1 were also investigated by Q-PCR. IFN-gamma KO animals presented the highest impairment in renal function compared to controls. Conversely, IL-12 KO animals were absolutely protected and, in a lesser extent, IFN-gamma/IL-12 KO double knockout was also protected from IRI. Gene expression analyses showed higher expression of HO-1, a cytoprotective gene, and IL-6, a pro-inflammatory cytokine, in IFN-gamma deficient animals subjected to IRI. Our results confirm that Th1 related cytokines such as IL-12 and IFN-gamma are critically involved in renal ischemia and reperfusion injury. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ischemic-reperfusion injury (IRI) triggers an inflammatory response involving neutrophils/macrophages, lymphocytes and endothelial cells. Galectin-3 is a multi-functional lectin with a broad range of action such as promotion of neutrophil adhesion, induction of oxidative stress, mastocyte migration and degranulation, and production of pro-inflammatory cytokines. The aim of this study was evaluate the role of galectin-3 in the inflammation triggered by IRI. Galectin-3 knockout (KO) and wild type (wt) mice were subjected to 45 min of renal pedicle occlusion. Blood and kidney samples were collected at 6, 24, 48 and 120 h. Blood urea was analyzed enzymatically, while MCP-1, IL-6 and IL-1 beta were studied by real-time PCR. Reactive oxygen species (ROS) was investigated by flow cytometry. Morphometric analyses were performed at 6, 24, 48 and 120 h after reperfusion. Urea peaked at 24 h, being significantly lower in knockout animals (wt = 264.4 +/- 85.21 mg/dl vs. gal-3 KO = 123.74 +/- 29.64 mg/dl, P = 0.001). Galectin-3 knockout animals presented less acute tubular necrosis and a more prominent tubular regeneration when compared with controls concurrently with lower expression of MCP-1, IL-6, IL-1 beta, less macrophage infiltration and lower ROS production at early time points. Galectin-3 seems to play a role in renal IRI involving the secretion of macrophage-related chemokine, pro-inflammatory cytokines and ROS production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ischemia and reperfusion injury (IR) is an antigen independent inflammatory process that causes tissue damage. After IR, kidneys up-regulate leukocyte adhesion molecules and toll-like receptors (TLRs). Moreover, injured kidneys can also secrete factors (i.e. heat shock protein) which bind to TLRs and trigger intracellular events culminating with the increase in the gene expression of inflammatory cytokines. FTY720 is an immunomodulatory compound and protects at least in part kidneys submitted to IR. The mechanisms associated with FTY720`s beneficial effects on kidneys after IR remain elusive. We investigated whether FTY720 administration in mice submitted to kidney IR is associated with modulation of TLR2 and TLR4 expression. C57BL/6 mice submitted to 30 min of renal pedicles clamp were evaluated for serum parameters (creatinine, urea and nitric oxide), kidney histology, spleen and kidney infiltrating cells expression of TLR2 and TLR4, resident kidney cells expression of TLR2 and TLR4 and IL-6 protein expression in kidney. FTY720-treated mice presented decrease in serum creatinine, urea and nitric oxide, diminished expression of TLR2 and TLR4 both in spleen and kidney infiltrating cells, and reduced kidney IL-6 protein expression in comparison with IR non-treated mice. However, acute tubular necrosis was present both in IR non-treated and IR + FTY720-treated groups. Also, FTY720 did not prevent TLR2 and TLR4 expression in kidney resident cells. In conclusion, FTY720 can promote kidney function recovery after IR by reducing the inflammatory process. Further studies are needed in order to establish whether TLR2 and TLR4 down regulation should be therapeutically addressed as protective targets of renal function and structure after IR. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim. Lower-limb traumatic injury associated with ischemia and followed by reperfusion (I/R) is a common severe situation in muscle lesions due to trauma and hypoxia followed by local and systemic injuries induced by oxygen-derived free radical release during reperfusion. The aim of this study was to evaluate the attenuating effects of trimetazidine (TMZ) and N-acetylcysteine (NAC) in such situation.Methods. The muscles at the root of the right hind limb of Wistar rats were cross-sectioned, preserving femoral vessels and nerves and clamping the femoral artery for four hours. The clamp was then released and the femoral artery has been reperfused for 2 hours. Rats were randomly divided in groups of ten as follows: Group 1: sham I/R, treated with saline; Group 2: I/R, treated with saline; Group 3: sham I/R, treated with TMZ (7.5 mg/kg/dose); Group 4: sham I/R, treated with NAC (375 mg/kg/dose); Group 5: I/R treated with TMZ (7.5 mg/kg/dose); Group 6: I/R treated with NAC (375 mg/kg/dose). All rats received two intravenous bolus injections of the drugs, one before ischemia and one before reperfusion. Oxidative stress in plasma (MDA, total, oxidized and reduced glutathione), creatinephosphokinase (CPK), optical and electron microscopy and pelvic extremity circumference and volume were studied.Results. No statistical differences were found between the groups for MDA or total and reduced glutathione. Oxidized glutathione increased significantly in groups 5 and 2. Limb circumference as well as limb volume increased in all groups over time, mainly in groups 5, 2 and 1. CPK increased in all groups, being highest in groups 5, 6 and 2. Histological lesions were present in all but sham groups, being less severe in group 6. Soleus muscle analyses at electron microscopy exhibit some degree of alteration in all groups.Conclusion. This experimental model simulated severe limb trauma associated with ischemia and reperfusion, and, as such, it was aggressive, causing severe injury and local inflammatory reaction. The model did not show antioxidant action from NAC, and possible antioxidant action from TMZ was insufficient to attenuate tissue injuries. [Int Angiol 2009;28:412-7]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJETIVO: Avaliar as alterações hemodinâmicas e sistêmicas decorrentes de isquemia e reperfusão (I/R) esplâncnica em ratos. MÉTODOS: Vinte ratos foram divididos em dois grupos: grupo controle: os animais foram submetidos à cirurgia, mas não a I/R e foram tratados com solução fisiológica (5 ml/kg/h) por 150 minutos; grupo I/R: os animais foram submetidos à administração contínua de solução fisiológica e à oclusão do tronco celíaco, artéria mesentérica superior e artéria mesentérica inferior por 30 minutos, seguidos por 120 minutos de reperfusão. Avaliou-se a pressão arterial média, pressão venosa, fluxo sangüíneo na aorta e na artéria mesentérica superior, freqüência cardíaca, temperatura esofágica e hematócrito. RESULTADOS: Durante a reperfusão, no grupo I/R, houve uma diminuição progressiva da pressão arterial média, fluxo sangüíneo na aorta e artéria mesentérica superior, freqüência cardíaca e temperatura esofágica; pressão venosa e hematócrito não sofreram alteração. CONCLUSÃO: O modelo de isquemia provocado por oclusão da artéria mesentérica superior, artéria mesentérica inferior e tronco celíaco por 30 minutos seguidos por 120 minutos de reperfusão provoca alterações sistêmicas evidenciadas por hipotensão, diminuição do fluxo sangüíneo mesentérico, da freqüência cardíaca e da temperatura esofágica.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sob anestesia geral, com constante controle sobre a pressão arterial e a saturação de oxigênio da hemoglobina arterial, realizou-se celiotomia em 12 eqüinos. No cólon menor exposto foram demarcados três segmentos de 25cm, separados entre si por igual distância. Dois desses segmentos foram submetidos à isquemia arteriovenosa completa por 90 (grupo A) ou 180 minutos (grupo B). O terceiro segmento foi o grupo-controle. Amostras para histopatologia foram colhidas ao final dos períodos de isquemia e após 90 e 180 minutos de reperfusão no grupo A e após 90 minutos de reperfusão no grupo B. No controle, colheram-se amostras no início e final do procedimento. Avaliaram-se as lesões produzidas na mucosa e na submucosa pelos métodos semiquantitativos-escores para desprendimento de epitélio, edema, hemorragia e infiltrado de neutrófilos, e pelos quantitativos-porcentagem de perda de mucosa (PM) e razão cripta:interstício (C:I). As lesões isquêmicas foram mais intensas no grupo B do que no A para PM, C:I, desprendimento de epitélio e edema de mucosa. As amostras obtidas após a reperfusão revelaram que houve agravamento na PM, C:I, desprendimento de epitélio e edema de submucosa em ambos os grupos. Concluiu-se que a reperfusão agravou as lesões isquêmicas no cólon menor e que o modelo proposto é viável para produção dessas lesões.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJETIVO: Neste trabalho foi padronizado modelo experimental de isquemia e reperfusão em retalho cutâneo em ratos no qual estudou-se possibilidade de uma solução antioxidante, composta por Ringer lactato, vitamina C e manitol de reduzir a área de necrose. MÉTODOS: O modelo consistiu de levantamento de retalho cutâneo axial de 6,0 x 3,0cm, submetido à isquemia de 8 horas e reperfusão de 7 dias. Os animais foram divididos em quatro grupos: grupos S1, S2 (10 animais cada), C e T (14 animais cada). Nos grupos S1 e S2 todos os procedimentos dos demais grupos foram efetuados, exceto a isquemia e reperfusão: S1 recebeu apenas Ringer lactato e S2 a solução antioxidante. Os grupos C e T foram submetidos à isquemia. O grupo C recebeu somente Ringer lactato e o grupo T a solução antioxidante. No 7(0) dia de pós-operatório as áreas de necrose e pele viável do retalho foram delineadas em decalque de acetato, os quais foram por sua vez analisados em sistema computadorizado KS-300 (Carl Zeiss). RESULTADOS: A análise estatística mostrou que não houve diferenças significativas entre o grupo tratado e controle quanto à área de necrose. CONCLUSÃO: Concluiu-se que o modelo experimental é consistente, determinando área de necrose limitada e uniforme nos animais não tratados e que as drogas usadas, nessa posologia e modo de aplicação, não foram efetivas em diminuir a área de necrose no modelo experimental em questão.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: Nitroxides have strong antioxidant capacity but their effectiveness is limited by their rapid intracellular inactivation. Poly nitroxyl-Albumin (PNA) is capable of regenerating inactivated nitroxide. We tested the effect of PNA against reperfusion injury in heart transplantation. Methods: Pig hearts were transplanted orthotopically. In the control group (n = 9) reperfusion was performed without reperfusion modifications. In the experimental group (n = 10) 1 ml/kg PNA was given before cross-clamp release. Results: Hemodynamic performance was impaired after transplantation in both groups without significant intergroup differences. Plasma malonedialdehyde levels were significantly diminished in the PNA group as compared to the controls. CK-MB levels in both groups were increased within the first 2 h of reperfusion without significant intergroup differences. In contrast, there were found significant higher values of myocardial specific lactate dehydrogenase (LD1) in the controls versus PNA group. Conclusions: PNA was able to reduce lipid peroxidation and attenuate free radical activity. Contractile dysfunction could no be improved, indicating that (a) the radical scavenging effect was to weak or (b) other mechanisms than free oxygen radicals are responsible for myocardial damage in this experimental model. (C) 2001 Elsevier B.V. B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background. Melatonin is a free radical scavenger with important actions in the study of renal ischemia and reperfusion (I/R). This study evaluated possible renal protection of high doses of melatonin in an experimental model of I/R in which rats were submitted to acute hyperglycemia under anesthesia with isoflurane.Method. Forty-four male Wistar rats, weighing more than 300 g, were randomly divided into 5 groups: G1, sham (n = 10); G2, melatonin (n = 10; 50 mg.kg(-1)); G3, hyperglycemia (n = 9; glucose 2.5 g.kg(-1)); G4, hyperglycemia/melatonin (n = 10; 2.5 g.kg(-1) glucose + melatonin 50 mg.kg(-1)); and G5, I/R (n = 5). In all groups, anesthesia was induced with 4% isoflurane and maintained with 1.5% to 2.0% isoflurane. Intraperitoneal injection of melatonin (G1, G4), glucose (G3, G4), or saline (G1, G5) was performed 40 minutes before left renal ischemia. Serum plasma values for creatinine and glucose were determined at baseline (M1), immediately following reperfusion (M2), and 24 hours after completion of the experiment (M3). Histological analysis was performed to evaluate tubular necrosis (0-5).Results. Serum glucose was higher at M2 in the groups supplemented with glucose, hyperglycemia (356.00 +/- 107.83), and hyperglycemia/melatonin (445.3 +/- 148.32). Creatinine values were higher at T3 (P = .0001) for I/R (3.6 +/- 0.37), hyperglycemia/melatonin (3.9 +/- 0.46), and hyperglycemia (3.71 +/- 0.69) and lower in the sham (0.79 +/- 0.16) and melatonin (2.01 +/- 1.01) groups, P < .05. Histology showed no necrosis injury in the G1, lesion grade 2 in the G2, and severe acute tubular necrosis in the G3: (grade 4), G4: (grade 5) and G5: (grade 4) groups (P < .0001).Discussion. Melatonin protected the kidneys submitted to I/R in rats without hyperglycemia; however, this did not occur when the I/R lesion was associated with hyperglycemia.Conclusions. Due to its antioxidant and antiapoptotic action, melatonin was able to mitigate, but not prevent acute tubular necrosis in rats with hyperglycemia under anesthesia by isoflurane.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To investigate the effect of cilostazol, in kidney and skeletal muscle of rats submitted to acute ischemia and reperfusion. METHODS: Fourty three animals were randomized and divided into two groups. Group I received a solution of cilostazol (10 mg/Kg) and group II received saline solution 0.9% (SS) by orogastric tube after ligature of the abdominal aorta. After four hours of ischemia the animals were divided into four subgroups: group IA (Cilostazol): two hours of reperfusion. Group IIA (SS): two hours of reperfusion. Group IB (Cilostazol): six hours of reperfusion. Group IIB (SS) six hours of reperfusion. After reperfusion, a left nephrectomy was performed and removal of the muscles of the hind limb. The histological parameters were studied. In kidney cylinders of myoglobin, vacuolar degeneration and acute tubular necrosis. In muscle interstitial edema, inflammatory infiltrate, hypereosinophilia fiber, cariopicnose and necrosis. Apoptosis was assessed by immunohistochemistry for cleaved caspase-3 and TUNEL. RESULTS: There was no statistically significant difference between groups. CONCLUSION: Cilostazol had no protective effect on the kidney and the skeletal striated muscle in rats submitted to acute ischemia and reperfusion in this model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: The clinical significance of ischemia/reperfusion of the lower extremities demands further investigation to enable the development of more effective therapeutic alternatives. This study investigated the changes in the vascular reactivity of the rabbit femoral artery and nitric oxide metabolites under partial ischemia/reperfusion conditions following cilostazol administration. METHODS: Ischemia was induced using infrarenal aortic clamping. The animals were randomly divided into seven groups: Control 90 minutes, Ischemia/Reperfusion 90/60 minutes, Control 120 minutes, Ischemia/Reperfusion 120/90 minutes, Cilostazol, Cilostazol before Ischemia/Reperfusion 120/90 minutes, and Ischemia 120 minutes/Cilostazol/Reperfusion 90 minutes. Dose-response curves for sodium nitroprusside, acetylcholine, and the calcium ionophore A23187 were obtained in isolated femoral arteries. The levels of nitrites and nitrates in the plasma and skeletal muscle were determined using chemiluminescence. RESULTS: Acetylcholine- and A23187-induced relaxation was reduced in the Ischemia/Reperfusion 120/90 group, and treatment with cilostazol partially prevented this ischemia/reperfusion-induced endothelium impairment. Only cilostazol treatment increased plasma levels of nitrites and nitrates. An elevation in the levels of nitrites and nitrates was observed in muscle tissues in the Ischemia/Reperfusion 120/90, Cilostazol/Ischemia/Reperfusion, and Ischemia/Cilostazol/Reperfusion groups. CONCLUSION: Hind limb ischemia/reperfusion yielded an impaired endothelium-dependent relaxation of the femoral artery. Furthermore, cilostazol administration prior to ischemia exerted a protective effect on endothelium-dependent vascular reactivity under ischemia/reperfusion conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Th1/Th2 balance represents an important factor in the pathogenesis of renal ischemia-reperfusion injury (IRI). In addition, IRI causes a systemic inflammation that can affect other tissues, such as the lungs. To investigate the ability of renal IRI to modulate pulmonary function in a specific model of allergic inflammation, C57Bl/6 mice were immunized with ovalbumin/albumen on days 0 and 7 and challenged with an ovalbumin (OA) aerosol on days 14 and 21. After 24 h of the second antigen challenge, the animals were subjected to 45 minutes of ischemia. After 24 h of reperfusion, the bronchoalveolar lavage (BAL) fluid, blood and lung tissue were collected for analysis. Serum creatinine levels increased in both allergic and non-immunized animals subjected to IRI. However, BAL analysis showed a reduction in the total cells (46%) and neutrophils (58%) compared with control allergic animals not submitted to IRI. In addition, OA challenge induced the phosphorylation of ERK and Akt and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lung homogenates. After renal IRI, the phosphorylation of ERK and expression of COX-2 and iNOS were markedly reduced; however, there was no difference in the phosphorylation of Akt between sham and ischemic OA-challenged animals. Mucus production was also reduced in allergic mice after renal IRI. IL-4, IL-5 and IL-13 were markedly down-regulated in immunized/challenged mice subjected to IRI. These results suggest that renal IRI can modulate lung allergic inflammation, probably by altering the Th1/Th2 balance and, at least in part, by changing cellular signal transduction factors. Copyright (C) 2012 S. Karger AG, Basel