1000 resultados para Injeção intravítrea eletrorretinograma
Resumo:
Anodic electrodissolution procedure in a flow injection system for determination of constituents in alloys is discussed. This approach implement sample preparation procedure by using a chamber and a DC power supply with constant direct current. Solid sample was attached to chamber as anode. In this review a general overview of these procedure is presented. The procedure presented a good performance characterized by a high sample throughput determinations, good accuracy and relative standard deviation.
Resumo:
A flow injection spectrophotometric procedure exploiting merging zones is proposed for determining vitamin B2 (riboflavin) in pharmaceutical preparations. The determination is based on the red-colored complex formation between vitamin B2 and silver(I) which was measured at 520 nm. Vitamin B2 was determined in four pharmaceutical preparations in the 1.0 to 50.0 mg L-1 concentration range, with a detection limit of 0.5 mg L-1. The recovery from three samples ranged from 98.0 to 104.0 %. The analytical frequency was 42 h-1 and r.s.d. were lower than 1% for solutions containing 10.0, 30.0 and 50.0 mg L-1 vitamin B2 (n= 10). The results obtained in commercial formulations using the FIA procedure were in good agreement with those obtained by using a conventional fluorimetric procedure (r=0.9998) and also with the label values (r= 0.9997).
Resumo:
The analysis of water samples containing volatile organic compounds has become an important task in analytical chemistry. Gas chromatography has been widely used for the analysis of volatile organic compounds in water. The headspace analysis shows as a principal characteristic the possibility of determination of the volatile components in drinking water. Benzene, Toluene and Xylene (BTX) are important compounds usually present in drinking water, from contamination by petroleum derivatives. Since they are toxic compounds even when present in low concentration levels, their determination is important in order to define the quality of the water. The sampling technique using headspace, coupled with gas chromatography as the separation method, showed to be suitable for BTX analysis in several samples at the mug/L (ppb) level.
Resumo:
A flow injection spectrophotometric system was projected for monitoring hydrogen peroxide during photodegradation of organic contaminants in photo-Fenton processes (Fe2+/H2O2/UV). Sample is injected manually in a carrier stream and then receives by confluence a 0.1 mol L-1 NH4VO3 solution in 0.5 mol L-1 H2SO4 medium. The product formed shows absorption at 446 nm which is recorded as a peak with height proportional to H2O2 concentration. The performance of the proposed system was evaluated by monitoring the consumption of H2O2 during the photodegradation of dichloroacetic acid solution by foto-Fenton reaction.
Resumo:
This paper presents an automatic procedure employing a reagent in the form of a slurry in a flow-injection system. The feasibility of the proposal is demonstrated by sulphate determination in water using the Barium Chloranilate method, which is based on the precipitation of barium sulphate. The release of a stoichiometric amount of highly colored chloranilic ions is monitored at 528 nm. The reaction is carried out in alcoholic medium in order to reduce the solubility of the reagent. A considerable improvement in the sensitivity is attained by adding ferric ions to the released chloranilic ions. An on-line filtration step to separate the excess reagent from the released chloranilic ions was necessary. In addition, a column containing a cation exchange resin was included in the manifold to remove potentially interfering ions. The proposed procedure is suitable for 30 determinations per hour and the relative standard deviation is less than 2%. The analytical curve is linear between 0.0 and 40 mg L-1 and the determination limit is about 2.0 mg L-1SO4(2-). Accuracy was confirmed by running several samples already analysed by a standard turbidimetric procedure.
Resumo:
A flow injection spectrophotometric procedure is proposed for the determination of paracetamol (acetaminophen) in pharmaceutical formulations. Powdered and liquid samples were previously dissolved/diluted in 0.05 mol L-1 hydrochloric acid solution and a volume of 250 µL was injected directly into a carrier stream of this same acid solution, flowing at 2.5 mL min-1. Paracetamol reacts with sodium hypochlorite forming N-acetyl-p-benzoquinoneimine which then reacts with sodium salicylate in sodium hydroxide solution yielding a blue indophenol dye which was measured at 640 nm in the pH range of 9.5-10.0. Paracetamol was determined in pharmaceutical products in the 1.0 to 100.0 mg L-1 (3.3x10-6 a 6.6x10-4 mol L-1) concentration range, with a detection limit of 0.5 mg L-1 (1.6x10-6 mol L-1). The recovery of this analyte in five samples ranged from 98.0 to 103.6 %. The analytical frequency was 80 determinations per hour and the RSDs were less than 1% for paracetamol concentrations of 25.0, 50.0 and 75.0 mg L-1 (n=10). A paired t-test showed that all results obtained for paracetamol in commercial formulations using the proposed flow injection procedure and a spectrophotometric batch procedure agree at the 95% confidence level.
Resumo:
A review about the state-of-the-art of flow injection analysis (FIA) -- capillary electrophoresis (CE) systems is presented. The basic principles of flow injection and capillary electrophoresis are briefly revised. The main aspects of the FIA-CE hybridization, including advantages and shortcomings, are discussed. Some applications involving all different designs are also presented. This review covers the literature from 1997 up to 2000.
Resumo:
A flow injection spectrophotometric procedure was developed for the determination of metamizol in pharmaceutical formulations. The system is based on the reaction between metamizol and triiodide generated in the system by mixing iodate and iodide-starch solutions. The absorbance of triiodide-starch complex giving a steady-state baseline value which was monitored at 580 nm. The inverse peaks caused by metamizol samples were measured and there was a direct relationship between absorbance decreasing and metamizol concentration from 1.4 x 10-4 to 7.0 x 10-4 mol L-1. The RSD was 0.45 % for a metamizol solution 4.2 x 10-4 mol L-1 (n = 10) with a detection limit (three-fold blank standard deviation/slope) of 6.0 x 10-5 mol L-1 The feasibility of the system was demonstrated for the determination of metamizol in commercial samples with sixty results obtained per hour. The results obtained for metamizol in pharmaceutical formulations using the proposed flow procedure and those obtained using an iodimetric procedure are in agreement at the 95% confidence level and within an acceptable range of error.
Resumo:
In this work, a spectrophotometric flow injection analysis system using a crude extract of avocado (Persea americana) as a source of polyphenol oxidase to dopamine determination was developed. The substrates and enzyme concentrations from 2.4x10-7 to 5.3x10-4 mol L-1 and 28 to 332 units mL-1 were evaluated, respectively. In addition, the FIA parameters such as sample loop (50 to 500 µL), flow rate (1.4 to 4.3 mL min-1) and reactor length (100 to 500 cm) were also evaluated in a 0.1 mol L-1 phosphate buffer solution (pH 7.0). Dopamine solution concentrations were determined using 277 units mL-1 enzyme solution, 400 mL enzyme loop, 375 µL sample loop, 2.2 mL min-1 flow rate and a reactor of 350 cm. The analytical curve showed a linearity from 5.3x10-5 to 5.3x10-4 mol L-1 dopamine with a detection limit of 1.3x10-5 mol L-1. The analytical frequency was 46 h-1 and the RSD lower than 0.5% for 5.3x10-4 mol L-1 dopamine solution (n=10). A paired t-test showed that all results obtained for dopamine in commercial formulations using the proposed flow injection procedure and a spectrophotometric procedure agree at the 95% confidence level.
Resumo:
In this work two procedures were proposed for analytical curves construction using a single standard solution employing a flow injection system with solid phase spectrophotometric detection (FI-SPS). A flow cell contends the chromogenic reagent 1-(2-tiazolylazo)-2-naphtol was positioned on the optical path. The first procedure was based on controlled concentration of analyte on solid phase and the relations between absorbance and the total volume of injected allowed the calculation of analyte concentration. The second procedure was developed employing controlled dispersion/retention in flow system where analyte concentration was obtained by exploiting the relation between transient signals of samples and single standard solution at equivalent reading time. The procedures were successfully applied for zinc determination in synthetic solutions with good precision and accuracy at 95% confidence level.
Resumo:
A new configuration for coupling a gas diffusion cell to a sequential injection system is presented. The matrix exchange is made without the need for additional rotary injection valves or peristaltic pumps, keeping the original mechanical components of the sequential injection apparatus: one syringe pump (or peristaltic pump) and one selection valve. The system was tested constructing analytical curves for sulfide exploring the formation of the methylene blue dye. The proposed method has a detection limit of 60 µg L-1 S2-, with a linear dynamic range between 0.10 and 4.0 mg L-1 S2- concentrations, with a sampling frequency of 20 h-1.
Resumo:
The aim of the present work was to test the combination of non-esterified fatty acid (NEFA) isolation using fumed silicon dioxide with capillary gas-chromatography (C-GC) with splitless injection for the analysis of NEFAs in human plasma. Injection volume, solvent re-condensation and split purge flow-rate were the parameters evaluated for the analysis of fatty acid methyl esters by C-GC. The use of a solvent re-condensation technique, associated with 1.0 µL injection and a split purge flow rate of 80 mL/min resulted in satisfactory analysis of NEFAs. Fourteen fatty acids were identified in plasma samples, ranging from 2.03 to 184.0 µmol/L. The combination of both techniques proved useful for routine analyses of plasma NEFAs.
Resumo:
An indirect flow injection spectrophotometric procedure is proposed for the determination of N-acetyl-L-cysteine in pharmaceutical formulations. In this system, ferroin ([Fe(II)-(fen)2]2+) in excess, with a strong absorption at 500 nm, is oxidized by cerium(IV) yielding cerium(III) and [Fe(III)-(fen)2]3+ (colorless), thus producing a baseline. When N-acetyl-L-cysteine solution is introduced into the flow injection system, it reacts with cerium(IV) increasing the analytical signal in proportion to the drug concentration. Under optimal experimental conditions, the linearity of the analytical curve for N-acetyl-L-cysteine ranged from 6.5x10-6 to 1.3x10-4 mol L-1. The detection limit was 5.0x10-6 mol L-1and recoveries between 98.0 and 106% were obtained. The sampling frequency was 60 determinations per hour and the RSD was smaller than 1.4% for 2.2x10-5 mol L-1 N-acetyl-L-cysteine.
Resumo:
A series of bovine serum albumin-immobilized supports have been prepared and used as restricted access media (RAM) columns. Restricted-access supports combine size-exclusion of proteins and other high-molar-mass matrix components with the simultaneous enrichment of low-molar mass analytes. These characteristics were chromatographically evaluated for the columns. The RAM-BSA (Bovine Serum Albumin) columns showed excellent performance for exclusion of human plasma protein with good retention capacity for a series of acidic, basic, and neutral drugs.
Resumo:
A flow injection turbidimetric procedure exploiting merging zones is proposed for determining homatropine methylbromide (HMB) in pharmaceutical preparations. The determination is based on the precipitation reaction of homatropine methylbromide with AgNO3 solution to form a precipitate, which was measured at 410 nm. The analytical curve was linear in the HMB concentration range from 8.0x10-4 to 1.7x10-3 mol L-1, with a detection limit of 9.5x10-5 mol L-1. The recoveries ranged from 94.9 to 104 %, the sampling frequency was 75 h-1 and relative standard deviations were smaller than 2.0 % for solutions containing 1.2x10-3 and 1.5x10-3 mol L-1 HMB (n=10). The results obtained for commercial formulations using the FIA procedure were in good agreement with those obtained by using a comparative method (r= 0.9983).