852 resultados para Initial data problem


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we consider a one-dimensional quasilinear parabolic equation and we prove that the lap number of any solution cannot increase through orbits as the time passes if the initial data is a continuous function. We deal with the lap number functional as a Lyapunov function, and apply lap number properties to reach an understanding on the asymptotic behavior of a particular problem. (c) 2006 Published by Elsevier Ltd.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The thesis studies the economic and financial conditions of Italian households, by using microeconomic data of the Survey on Household Income and Wealth (SHIW) over the period 1998-2006. It develops along two lines of enquiry. First it studies the determinants of households holdings of assets and liabilities and estimates their correlation degree. After a review of the literature, it estimates two non-linear multivariate models on the interactions between assets and liabilities with repeated cross-sections. Second, it analyses households financial difficulties. It defines a quantitative measure of financial distress and tests, by means of non-linear dynamic probit models, whether the probability of experiencing financial difficulties is persistent over time. Chapter 1 provides a critical review of the theoretical and empirical literature on the estimation of assets and liabilities holdings, on their interactions and on households net wealth. The review stresses the fact that a large part of the literature explain households debt holdings as a function, among others, of net wealth, an assumption that runs into possible endogeneity problems. Chapter 2 defines two non-linear multivariate models to study the interactions between assets and liabilities held by Italian households. Estimation refers to a pooling of cross-sections of SHIW. The first model is a bivariate tobit that estimates factors affecting assets and liabilities and their degree of correlation with results coherent with theoretical expectations. To tackle the presence of non normality and heteroskedasticity in the error term, generating non consistent tobit estimators, semi-parametric estimates are provided that confirm the results of the tobit model. The second model is a quadrivariate probit on three different assets (safe, risky and real) and total liabilities; the results show the expected patterns of interdependence suggested by theoretical considerations. Chapter 3 reviews the methodologies for estimating non-linear dynamic panel data models, drawing attention to the problems to be dealt with to obtain consistent estimators. Specific attention is given to the initial condition problem raised by the inclusion of the lagged dependent variable in the set of explanatory variables. The advantage of using dynamic panel data models lies in the fact that they allow to simultaneously account for true state dependence, via the lagged variable, and unobserved heterogeneity via individual effects specification. Chapter 4 applies the models reviewed in Chapter 3 to analyse financial difficulties of Italian households, by using information on net wealth as provided in the panel component of the SHIW. The aim is to test whether households persistently experience financial difficulties over time. A thorough discussion is provided of the alternative approaches proposed by the literature (subjective/qualitative indicators versus quantitative indexes) to identify households in financial distress. Households in financial difficulties are identified as those holding amounts of net wealth lower than the value corresponding to the first quartile of net wealth distribution. Estimation is conducted via four different methods: the pooled probit model, the random effects probit model with exogenous initial conditions, the Heckman model and the recently developed Wooldridge model. Results obtained from all estimators accept the null hypothesis of true state dependence and show that, according with the literature, less sophisticated models, namely the pooled and exogenous models, over-estimate such persistence.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the last few years the resolution of numerical weather prediction (nwp) became higher and higher with the progresses of technology and knowledge. As a consequence, a great number of initial data became fundamental for a correct initialization of the models. The potential of radar observations has long been recognized for improving the initial conditions of high-resolution nwp models, while operational application becomes more frequent. The fact that many nwp centres have recently taken into operations convection-permitting forecast models, many of which assimilate radar data, emphasizes the need for an approach to providing quality information which is needed in order to avoid that radar errors degrade the model's initial conditions and, therefore, its forecasts. Environmental risks can can be related with various causes: meteorological, seismical, hydrological/hydraulic. Flash floods have horizontal dimension of 1-20 Km and can be inserted in mesoscale gamma subscale, this scale can be modeled only with nwp model with the highest resolution as the COSMO-2 model. One of the problems of modeling extreme convective events is related with the atmospheric initial conditions, in fact the scale dimension for the assimilation of atmospheric condition in an high resolution model is about 10 Km, a value too high for a correct representation of convection initial conditions. Assimilation of radar data with his resolution of about of Km every 5 or 10 minutes can be a solution for this problem. In this contribution a pragmatic and empirical approach to deriving a radar data quality description is proposed to be used in radar data assimilation and more specifically for the latent heat nudging (lhn) scheme. Later the the nvective capabilities of the cosmo-2 model are investigated through some case studies. Finally, this work shows some preliminary experiments of coupling of a high resolution meteorological model with an Hydrological one.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider a simplified system of a growing colony of cells described as a free boundary problem. The system consists of two hyperbolic equations of first order coupled to an ODE to describe the behavior of the boundary. The system for cell populations includes non-local terms of integral type in the coefficients. By introducing a comparison with solutions of an ODE's system, we show that there exists a unique homogeneous steady state which is globally asymptotically stable for a range of parameters under the assumption of radially symmetric initial data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

El correcto pronóstico en el ámbito de la logística de transportes es de vital importancia para una adecuada planificación de medios y recursos, así como de su optimización. Hasta la fecha los estudios sobre planificación portuaria se basan principalmente en modelos empíricos; que se han utilizado para planificar nuevas terminales y desarrollar planes directores cuando no se dispone de datos iniciales, analíticos; más relacionados con la teoría de colas y tiempos de espera con formulaciones matemáticas complejas y necesitando simplificaciones de las mismas para hacer manejable y práctico el modelo o de simulación; que requieren de una inversión significativa como para poder obtener resultados aceptables invirtiendo en programas y desarrollos complejos. La Minería de Datos (MD) es un área moderna interdisciplinaria que engloba a aquellas técnicas que operan de forma automática (requieren de la mínima intervención humana) y, además, son eficientes para trabajar con las grandes cantidades de información disponible en las bases de datos de numerosos problemas prácticos. La aplicación práctica de estas disciplinas se extiende a numerosos ámbitos comerciales y de investigación en problemas de predicción, clasificación o diagnosis. Entre las diferentes técnicas disponibles en minería de datos las redes neuronales artificiales (RNA) y las redes probabilísticas o redes bayesianas (RB) permiten modelizar de forma conjunta toda la información relevante para un problema dado. En el presente trabajo se han analizado dos aplicaciones de estos casos al ámbito portuario y en concreto a contenedores. En la Tesis Doctoral se desarrollan las RNA como herramienta para obtener previsiones de tráfico y de recursos a futuro de diferentes puertos, a partir de variables de explotación, obteniéndose valores continuos. Para el caso de las redes bayesianas (RB), se realiza un trabajo similar que para el caso de las RNA, obteniéndose valores discretos (un intervalo). El principal resultado que se obtiene es la posibilidad de utilizar tanto las RNA como las RB para la estimación a futuro de parámetros físicos, así como la relación entre los mismos en una terminal para una correcta asignación de los medios a utilizar y por tanto aumentar la eficiencia productiva de la terminal. Como paso final se realiza un estudio de complementariedad de ambos modelos a corto plazo, donde se puede comprobar la buena aceptación de los resultados obtenidos. Por tanto, se puede concluir que estos métodos de predicción pueden ser de gran ayuda a la planificación portuaria. The correct assets’ forecast in the field of transportation logistics is a matter of vital importance for a suitable planning and optimization of the necessary means and resources. Up to this date, ports planning studies were basically using empirical models to deal with new terminals planning or master plans development when no initial data are available; analytical models, more connected to the queuing theory and the waiting times, and very complicated mathematical formulations requiring significant simplifications to acquire a practical and easy to handle model; or simulation models, that require a significant investment in computer codes and complex developments to produce acceptable results. The Data Mining (DM) is a modern interdisciplinary field that include those techniques that operate automatically (almost no human intervention is required) and are highly efficient when dealing with practical problems characterized by huge data bases containing significant amount of information. These disciplines’ practical application extends to many commercial or research fields, dealing with forecast, classification or diagnosis problems. Among the different techniques of the Data Mining, the Artificial Neuronal Networks (ANN) and the probabilistic – or Bayesian – networks (BN) allow the joint modeling of all the relevant information for a given problem. This PhD work analyses their application to two practical cases in the ports field, concretely to container terminals. This PhD work details how the ANN have been developed as a tool to produce traffic and resources forecasts for several ports, based on exploitation variables to obtain continuous values. For the Bayesian networks case (BN), a similar development has been carried out, obtaining discreet values (an interval). The main finding is the possibility to use ANN and BN to estimate future needs of the port’s or terminal’s physical parameters, as well as the relationship between them within a specific terminal, that allow a correct assignment of the necessary means and, thus, to increase the terminal’s productive efficiency. The final step is a short term complementarily study of both models, carried out in order to verify the obtained results. It can thus be stated that these prediction methods can be a very useful tool in ports’ planning.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Esta tesis se basa en el estudio de la trayectoria que pasa por dos puntos en el problema de los dos cuerpos, inicialmente desarrollado por Lambert, del que toma su nombre. En el pasado, el Problema de Lambert se ha utilizado para la determinación de órbitas a partir de observaciones astronómicas de los cuerpos celestes. Actualmente, se utiliza continuamente en determinación de órbitas, misiones planetaria e interplanetarias, encuentro espacial e interceptación, o incluso en corrección de orbitas. Dada su gran importancia, se decide investigar especialmente sobre su solución y las aplicaciones en las misiones espaciales actuales. El campo de investigación abierto, es muy amplio, así que, es necesario determinar unos objetivos específicos realistas, en el contexto de ejecución de una Tesis, pero que sirvan para mostrar con suficiente claridad el potencial de los resultados aportados en este trabajo, e incluso poder extenderlos a otros campos de aplicación. Como resultado de este análisis, el objetivo principal de la Tesis se enfoca en el desarrollo de algoritmos para resolver el Problema de Lambert, que puedan ser aplicados de forma muy eficiente en las misiones reales donde aparece. En todos los desarrollos, se ha considerado especialmente la eficiencia del cálculo computacional necesario en comparación con los métodos existentes en la actualidad, destacando la forma de evitar la pérdida de precisión inherente a este tipo de algoritmos y la posibilidad de aplicar cualquier método iterativo que implique el uso de derivadas de cualquier orden. En busca de estos objetivos, se desarrollan varias soluciones para resolver el Problema de Lambert, todas ellas basadas en la resolución de ecuaciones transcendentes, con las cuales, se alcanzan las siguientes aportaciones principales de este trabajo: • Una forma genérica completamente diferente de obtener las diversas ecuaciones para resolver el Problema de Lambert, mediante desarrollo analítico, desde cero, a partir de las ecuaciones elementales conocidas de las cónicas (geométricas y temporal), proporcionando en todas ellas fórmulas para el cálculo de derivadas de cualquier orden. • Proporcionar una visión unificada de las ecuaciones más relevantes existentes, mostrando la equivalencia con variantes de las ecuaciones aquí desarrolladas. • Deducción de una nueva variante de ecuación, el mayor logro de esta Tesis, que destaca en eficiencia sobre todas las demás (tanto en coste como en precisión). • Estudio de la sensibilidad de la solución ante variación de los datos iniciales, y como aplicar los resultados a casos reales de optimización de trayectorias. • También, a partir de los resultados, es posible deducir muchas propiedades utilizadas en la literatura para simplificar el problema, en particular la propiedad de invariancia, que conduce al Problema Transformado Simplificado. ABSTRACT This thesis is based on the study of the two-body, two-point boundary-value problem, initially developed by Lambert, from who it takes its name. Since the past, Lambert's Problem has been used for orbit determination from astronomical observations of celestial bodies. Currently, it is continuously used in orbit determinations, for planetary and interplanetary missions, space rendezvous, and interception, or even in orbit corrections. Given its great importance, it is decided to investigate their solution and applications in the current space missions. The open research field is very wide, it is necessary to determine specific and realistic objectives in the execution context of a Thesis, but that these serve to show clearly enough the potential of the results provided in this work, and even to extended them to other areas of application. As a result of this analysis, the main aim of the thesis focuses on the development of algorithms to solve the Lambert’s Problem which can be applied very efficiently in real missions where it appears. In all these developments, it has been specially considered the efficiency of the required computational calculation compared to currently existing methods, highlighting how to avoid the loss of precision inherent in such algorithms and the possibility to apply any iterative method involving the use of derivatives of any order. Looking to meet these objectives, a number of solutions to solve the Lambert’s Problem are developed, all based on the resolution of transcendental equations, with which the following main contributions of this work are reached: • A completely different generic way to get the various equations to solve the Lambert’s Problem by analytical development, from scratch, from the known elementary conic equations (geometrics and temporal), by providing, in all cases, the calculation of derivatives of any order. • Provide a unified view of most existing relevant equations, showing the equivalence with variants of the equations developed here. • Deduction of a new variant of equation, the goal of this Thesis, which emphasizes efficiency (both computational cost and accuracy) over all other. • Estudio de la sensibilidad de la solución ante la variación de las condiciones iniciales, mostrando cómo aprovechar los resultados a casos reales de optimización de trayectorias. • Study of the sensitivity of the solution to the variation of the initial data, and how to use the results to real cases of trajectories’ optimization. • Additionally, from results, it is possible to deduce many properties used in literature to simplify the problem, in particular the invariance property, which leads to a simplified transformed problem.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The author is partially supported by: M. U. R. S. T. Prog. Nazionale “Problemi e Metodi nella Teoria delle Equazioni Iperboliche”.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

∗The author was partially supported by M.U.R.S.T. Progr. Nazionale “Problemi Non Lineari...”

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Site 1103 was one of a transect of three sites drilled across the Antarctic Peninsula continental shelf during Leg 178. The aim of drilling on the shelf was to determine the age of the sedimentary sequences and to ground truth previous interpretations of the depositional environment (i.e., topsets and foresets) of progradational seismostratigraphic sequences S1, S2, S3, and S4. The ultimate objective was to obtain a better understanding of the history of glacial advances and retreats in this west Antarctic margin. Drilling the topsets of the progradational wedge (0-247 m below seafloor [mbsf]), which consist of unsorted and unconsolidated materials of seismic Unit S1, was very unfavorable, resulting in very low (2.3%) core recovery. Recovery improved (34%) below 247 mbsf, corresponding to sediments of seismic Unit S3, which have a consolidated matrix. Logs were only obtained from the interval between 75 and 244 mbsf, and inconsistencies on the automatic analog picking of the signals received from the sonic log at the array and at the two other receivers prevented accurate shipboard time-depth conversions. This, in turn, limited the capacity for making seismic stratigraphic interpretations at this site and regionally. This study is an attempt to compile all available data sources, perform quality checks, and introduce nonstandard processing techniques for the logging data obtained to arrive at a reliable and continuous depth vs. velocity profile. We defined 13 data categories using differential traveltime information. Polynomial exclusion techniques with various orders and low-pass filtering reduced the noise of the initial data pool and produced a definite velocity depth profile that is synchronous with the resistivity logging data. A comparison of the velocity profile produced with various other logs of Site 1103 further validates the presented data. All major logging units are expressed within the new velocity data. A depth-migrated section with the new velocity data is presented together with the original time section and initial depth estimates published within the Leg 178 Initial Reports volume. The presented data confirms the location of the shelf unconformity at 222 ms two-way traveltime (TWT), or 243 mbsf, and allows its seismic identification as a strong negative and subsequent positive reflection.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Este estudo tem como objectivo investigar o papel que as representações, construídas por alunos do 1.o ano de escolaridade, desempenham na resolução de problemas de Matemática. Mais concretamente, a presente investigação procura responder às seguintes questões: Que representações preferenciais utilizam os alunos para resolver problemas? De que forma é que as diferentes representações são influenciadas pelas estratégias de resolução de problemas utilizadas pelos alunos? Que papéis têm os diferentes tipos de representação na resolução dos problemas? Nesta investigação assume-se que a resolução de problemas constitui uma actividade muito importante na aprendizagem da Matemática no 1.o Ciclo do Ensino Básico. Os problemas devem ser variados, apelar a estratégias diversificadas de resolução e permitir diferentes representações por parte dos alunos. As representações cativas, icónicas e simbólicas constituem importantes ferramentas para os alunos organizarem, registarem e comunicarem as suas ideias matemáticas, nomeadamente no âmbito da resolução de problemas, servindo igualmente de apoio à compreensão de conceitos e relações matemáticas. A metodologia de investigação segue uma abordagem interpretativa tomando por design o estudo de caso. Trata-se simultaneamente de uma investigação sobre a própria prática, correspondendo os quatro estudos de caso a quatro alunos da turma de 1.0 ano de escolaridade da investigadora. A recolha de dados teve lugar durante o ano lectivo 2007/2008 e recorreu à observação, à análise de documentos, a diários, a registos áudio/vídeo e ainda a conversas com os alunos. A análise de dados que, numa primeira fase, acompanhou a recolha de dados, teve como base o problema e as questões da investigação bem como o referencial teórico que serviu de suporte à investigação. Com base no referencial teórico e durante o início do processo de análise, foram definidas as categorias de análise principais, sujeitas posteriormente a um processo de adequação e refinamento no decorrer da análise e tratamento dos dados recolhidos -com vista à construção dos casos em estudo. Os resultados desta investigação apontam as representações do tipo icónico e as do tipo simbólico como as representações preferenciais dos alunos, embora sejam utilizadas de formas diferentes, com funções distintas e em contextos diversos. Os elementos simbólicos apoiam-se frequentemente em elementos icónicos, sendo estes últimos que ajudam os alunos a descompactar o problema e a interpretá-lo. Nas representações icónicas enfatiza-se o papel do diagrama, o qual constitui uma preciosa ferramenta de apoio ao raciocínio matemático. Conclui-se ainda que enquanto as representações activas dão mais apoio a estratégias de resolução que envolvem simulação, as representações icónicas e simbólicas são utilizadas com estratégias diversificadas. As representações construídas, com papéis e funções diferentes entre si, e que desempenham um papel crucial na correcta interpretação e resolução dos problemas, parecem estar directamente relacionadas com as caraterísticas da tarefa proposta no que diz respeito às estruturas matemáticas envolvidas. ABSTRACT; The objective of the present study is to investigate the role of the representations constructed by 1st grade students in mathematical problem solving. More specifically, this research is oriented by the following questions: Which representations are preferably used by students to solve problems? ln which way the strategies adopted by the students in problem solving influence those distinct representations? What is the role of the distinct types of representation in the problems solving process? ln this research it is assumed that the resolution of problems is a very important activity in the Mathematics learning at the first cycle of basic education. The problems must be varied, appealing to diverse strategies of resolution and allow students to construct distinct representations. The active, iconic and symbolic representations are important tools for students to organize, to record and to communicate their mathematical ideas, particularly in problem solving context, as well as supporting the understanding of mathematical concepts and relationships. The adopted research methodology follows an interpretative approach, and was developed in the context of the researcher classroom, originating four case studies corresponding to four 1 st grade students of the researcher's class. Data collection was carried out during the academic year of 2007/2008 and was based on observation, analysis of documents, diaries, audio and video records and informal conversations with students. The initial data analysis was based on the problems and issues of research, as well in the theoretical framework that supports it. The main categories of analysis were defined based on the theoretical framework, and were subjected to a process of adaptation and refining during data processing and analysis aiming the -case studies construction. The results show that student's preferential representations are the iconic and the symbolic, although these types of representations are used in different ways, with different functions and in different contexts. The symbolic elements are often supported by iconic elements, the latter helping students to unpack the problem and interpret it. ln the iconic representations the role of the diagrams is emphasized, consisting in a valuable tool to support the mathematical reasoning. One can also conclude that while the active representations give more support to the resolution strategies involving simulation, the iconic and symbolic representations are preferably used with different strategies. The representations constructed with distinct roles and functions, are crucial in the proper interpretation and resolution of problems, and seem to be directly related to the characteristics of the proposed task with regard to the mathematical structures involved.