918 resultados para Hydrolysis kinetics
Resumo:
The vertical distribution of the variables relevant to P forms in sediments were studied in a shallow Chinese freshwater lake (Lake Donghu) in 1997, 1998, 1999 and 2000, to assess the contribution of enzyme to P availability in sediment cores. Sediment P was fractionationd into iron-bound P, calcium-bound P, acid soluble organic P (ASOP) and hot NaOH extractable residual organic P. The former two species made the largest contribution to the sediment P pool. All P species exhibited significantly higher concentrations in different depths at Station I, compared with those found at Station II, except for ASOP. Coupled with these lower ASOP concentrations, the V-max data of alkaline phosphatase, measured on the same samples, were significantly higher at station I. Taken together, ASOP were probably important in supplying the enzymatic substrate (Phosphatase Hydrolyzable Phosphorus, PHP) into interstitial water. Dissolved orthophosphate and PHP concentrations were highly heterogeneous , but peaked in subsurface, paralleled by higher V-max and lower K-m values of alkaline phosphatase, throughout the sediment core. Sediment in the eutrophic lake is not only enriched in available P (iron-bound P), or stores residual P, but also tends to release PHP, thereby inducing the production of alkaline phosphatase and releasing o-P into water column by enzymatic hydrolysis. The latter process may also occur in relatively deep sediment layers.
Resumo:
The impacts of submerged macrophytes on kinetics of alkaline phosphatase were studied in two 680 m(2) enclosures in a shallow Chinese freshwater lake (Donghu Lake) from April to October 1996, and two experimental pools (120 m(2)) built inland in 1998. The submerged macrophytes were Vallisneria sp, Potamogeton crispus. In the presence of macrophytes, the concentration of orthophosphate was significantly lower, coupled with the decreasing function of organic P hydrolysis, in terms of lower V-max and higher K-m values of aIkaline phosphatase in water, filtered and unfiltered (0.45 mu m); in the interstitial water, the V-max values of the enzyme in sediments were significantly lower, exhibited by a spatial and vertical profile. The results implied the key role of submerged macrophytes was the retention of P nutrients. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The hydrolysis/precipitation behaviors of Al3+, Al-13 and Al-30 under conditions typical for flocculation in water treatment were investigated by studying the particulates' size development, charge characteristics, chemical species and speciation transformation of coagulant hydrolysis precipitates. The optimal pH conditions for hydrolysis precipitates formation for AlCl3, PAC(A113) and PAC(A130) were 6.5-7.5, 8.5-9.5, and 7.5-9.5, respectively. The precipitates' formation rate increased with the increase in dosage, and the relative rates were AlCl3 >> PAC(A130) > PACA113. The precipitates' size increased when the dosage increased from 50 mu M to 200 mu M, but it decreased when the dosage increased to 800 AM. The Zeta potential of coagulant hydrolysis precipitates decreased with the increase in pH for the three coagulants. The isoelectric points of the freshly formed precipitates for AlCl3, PAC(A113) and PAC(A130) were 7.3, 9.6 and 9.2, respectively. The Zeta potentials of AlCl3 hydrolysis precipitates were lower than those of PAC(A113) and PAC(A130) when pH > 5.0. The Zeta potential of PAC(A130) hydrolysis precipitates was higher than that of PACA113 at the acidic side, but lower at the alkaline side. The dosage had no obvious effect on the Zeta potential of hydrolysis precipitates under fixed pH conditions. The increase in Zeta potential with the increase in dosage under uncontrolled pH conditions was due to the pH depression caused by coagulant addition. Al-Ferron research indicated that the hydrolysis precipitates of AlCl3 were composed of amorphous AI(OH)3 precipitates, but those of PACA113 and PACA130 were composed of aggregates of Al-13 and Al-30, respectively. Al3+ was the most un-stable species in coagulants, and its hydrolysis was remarkably influenced by solution pH. Al-13 and Al-30 species were very stable, and solution pH and aging had little effect on the chemical species of their hydrolysis products. The research method involving coagulant hydrolysis precipitates based on Al-Ferron reaction kinetics was studied in detail. The Al species classification based on complex reaction kinetic of hydrolysis precipitates and Ferron reagent was different from that measured in a conventional coagulant assay using the Al--Ferron method. The chemical composition of Al-a, Al-b and Al-c depended on coagulant and solution pH. The Al-b measured in the current case was different from Keggin Al-13, and the high Alb content in the AlCl3 hydrolysis precipitates could not used as testimony that most of the Al3+ Was converted to highly charged Al-13 species during AlCl3 coagulation.
Resumo:
We investigated the kinetics of hot liquid water (HLW) hydrolysis over a 60-min period using a self-designed setup. The reaction was performed within the range 160-220 °C, under reaction conditions of 4.0 MPa, a 1:20 solid:liquid ratio (g/mL), at 500 rpm stirring speed. Xylan was chosen as a model compound for hemicelluloses, and two kinds of agricultural wastes-rice straw and palm shell-were used as typical feedstocks representative of herbaceous and woody biomasses, respectively. The hydrolysis reactions for the three kinds of materials followed a first-order sequential kinetic model, and the hydrolysis activation energies were 65.58 kJ/mol for xylan, 68.76 kJ/mol for rice straw, and 95.19 kJ/mol for palm shell. The activation energies of sugar degradation were 147.21 kJ/mol for xylan, 47.08 kJ/mol for rice straw and 79.74 kJ/mol for palm shell. These differences may be due to differences in the composition and construction of the three kinds of materials. In order to reduce the decomposition of sugars, the hydrolysis time of biomasses such as rice straw and palm shell should be strictly controlled.
Resumo:
Enzymatic hydrolysis of cellulose was highly complex because of the unclear enzymatic mechanism and many factors that affect the heterogeneous system. Therefore, it is difficult to build a theoretical model to study cellulose hydrolysis by cellulase. Artificial neural network (ANN) was used to simulate and predict this enzymatic reaction and compared with the response surface model (RSM). The independent variables were cellulase amount X-1, substrate concentration X-2, and reaction time X-3, and the response variables were reducing sugar concentration Y-1 and transformation rate of the raw material Y-2. The experimental results showed that ANN was much more suitable for studying the kinetics of the enzymatic hydrolysis than RSM. During the simulation process, relative errors produced by the ANN model were apparently smaller than that by RSM except one and the central experimental points. During the prediction process, values produced by the ANN model were much closer to the experimental values than that produced by RSM. These showed that ANN is a persuasive tool that can be used for studying the kinetics of cellulose hydrolysis catalyzed by cellulase.
Resumo:
A new method for quantitative analysis of lactide has been developed by applying chemical kinetics to a HPLC system. The most important advance is its practical approach to the quantification of analytes that are unstable in the HPLC mobile phase. In HPLC analysis, anhydrous mobile phases cannot separate lactide from impurities, and only mixtures of water and organic solvent can achieve effective separation. By selecting conditions for testing and studying the kinetics of lactide hydrolysis, extensive experiments revealed that lactide degradation can be treated as a pseudo-first-order reaction under the given HPLC conditions, and lactide content or purity can be quantitatively determined. This method is practical for measuring the purity of the intermediate lactide in polylactic acid (PLA) production and the lactide content in PLA.
Resumo:
The efficient cleavage of plasmid DNA ( pCAT) by binuclear lanthanide complexes was investigated. At 37 degrees C and neutral pH, both Ho23+L and Er23+L promoted 100% conversion of supercoiled plasmid to the nicked circular form and linear form in 1 h. The corresponding saturation kinetics curve of cleavage of pCAT plasmid by binuclear lanthanide complexes showed the expected increase with catalyst concentration. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Regions of the hamster alpha 1-adrenergic receptor (alpha 1 AR) that are important in GTP-binding protein (G protein)-mediated activation of phospholipase C were determined by studying the biological functions of mutant receptors constructed by recombinant DNA techniques. A chimeric receptor consisting of the beta 2-adrenergic receptor (beta 2AR) into which the putative third cytoplasmic loop of the alpha 1AR had been placed activated phosphatidylinositol metabolism as effectively as the native alpha 1AR, as did a truncated alpha 1AR lacking the last 47 residues in its cytoplasmic tail. Substitutions of beta 2AR amino acid sequence in the intermediate portions of the third cytoplasmic loop of the alpha 1AR or at the N-terminal portion of the cytoplasmic tail caused marked decreases in receptor coupling to phospholipase C. Conservative substitutions of two residues in the C terminus of the third cytoplasmic loop (Ala293----Leu, Lys290----His) increased the potency of agonists for stimulating phosphatidylinositol metabolism by up to 2 orders of magnitude. These data indicate (i) that the regions of the alpha 1AR that determine coupling to phosphatidylinositol metabolism are similar to those previously shown to be involved in coupling of beta 2AR to adenylate cyclase stimulation and (ii) that point mutations of a G-protein-coupled receptor can cause remarkable increases in sensitivity of biological response.
Resumo:
To give the first demonstration of neighboring group-controlled drug delivery rates, a series of novel, polymerizable ester drug conjugates was synthesized and fully characterized. The monomers are suitable for copolymerization in biomaterials where control of drug release rate is critical to prophylaxis or obviation of infection. The incorporation of neighboring group moieties differing in nucleophilicity, geometry, and steric bulk in the conjugates allowed the rate of ester hydrolysis, and hence drug liberation, to be rationally and widely controlled. Solutions (2.5 x 10-5 mol dm-3) of ester conjugates of nalidixic acid incorporating pyridyl, amino, and phenyl neighboring groups hydrolyzed according to first-order kinetics, with rate constants between 3.00 ( 0.12 10-5 s -1 (fastest) and 4.50 ( 0.31 10- 6 s-1 (slowest). The hydrolysis was characterized using UV-visible spectroscopy. When copolymerized with poly(methyl methacrylate), free drug was shown to elute from the resulting materials, with the rate of release being controlled by the nature of the conjugate, as in solution. The controlled molecular architecture demonstrated by this system offers an attractive class of drug conjugate for the delivery of drugs from polymeric biomaterials such as bone cements in terms of both sustained, prolonged drug release and minimization of mechanical compromise as a result of release. We consider these results to be the rationale for the development of 'designer' drug release biomaterials, where the rate of required release can be controlled by predetermined molecular architecture.
Resumo:
For the first time, the coupling of fast transient kinetic switching and the use of an isotopically labelled reactant (15NO) has allowed detailed analysis of the evolution of all the products and reactants involved in the regeneration of a NOx storage reduction (NSR) material. Using realistic regeneration times (ca. 1 s) for Pt, Rh and Pt/Rh-containing Ba/Al2O3 catalysts we have revealed an unexpected double peak in the evolution of nitrogen. The first peak occurred immediately on switching from lean to rich conditions, while the second peak started at the point at which the gases switched from rich to lean. The first evolution of nitrogen occurs as a result of the fast reaction between H2 and/or CO and NO on reduced Rh and/or Pt sites. The second N2 peak which occurs upon removal of the rich phase can be explained by reaction of stored ammonia with stored NOx, gas phase NOx or O2. The ammonia can be formed either by hydrolysis of isocyanates or by direct reaction of NO and H2.
The study highlights the importance of the relative rates of regeneration and storage in determining the overall performance of the catalysts. The performance of the monometallic 1.1%Rh/Ba/Al2O3 catalyst at 250 and 350 °C was found to be dependent on the rate of NOx storage, since the rate of regeneration was sufficient to remove the NOx stored in the lean phase. In contrast, for the monometallic 1.6%Pt/Ba/Al2O3 catalyst at 250 °C, the rate of regeneration was the determining factor with the result that the amount of NOx stored on the catalyst deteriorated from cycle to cycle until the amount of NOx stored in the lean phase matched the NOx reduced in the rich phase. On the basis of the ratio of exposed metal surface atoms to total Ba content, the monometallic 1.6%Pt/Ba/Al2O3 catalyst outperformed the Rh-containing catalysts at 250 and 350 °C even when CO was used as a reductant.
Resumo:
The dilute acid hydrolysis of grass and cellulose with phosphoric acid was undertaken in a microwave reactor system. The experimental data and reaction kinetic analysis indicate that this is a potential process for cellulose and hemi-cellulose hydrolysis, due to a rapid hydrolysis reaction at moderate temperatures. The optimum conditions for grass hydrolysis were found to be 2.5% phosphoric acid at a temperature of 175 degrees C. It was found that sugar degradation occurred at acid concentrations greater than 2.5% (v/v) and temperatures greater than 175 degrees C. In a further series of experiments, the kinetics of dilute acid hydrolysis of cellulose was investigated varying phosphoric acid concentration and reaction temperatures. The experimental data indicate that the use of microwave technology can successfully facilitate dilute acid hydrolysis of cellulose allowing high yields of glucose in short reaction times. The optimum conditions gave a yield of 90% glucose. A pseudo-homogeneous consecutive first order reaction was assumed and the reaction rate constants were calculated as: k(1) = 0.0813 s(-1); k(2) = 0.0075 s(-1), which compare favourably with reaction rate constants found in conventional non-microwave reaction systems. The kinetic analysis would indicate that the primary advantages of employing microwave heating were to: achieve a high rate constant at moderate temperatures: and to prevent 'hot spot' formation within the reactor, which would have cause localised degradation of glucose.
Resumo:
The kinetics of the acid-catalysed hydrolysis of cellobiose in the ionic liquid 1-ethyl-3-methylimidazolium chloride, [C(2)mim]Cl, was studied as a model for general lignocellulosic biomass hydrolysis in ionic liquid systems. The results show that the rate of the two competing reactions, polysaccharide hydrolysis and sugar decomposition, vary with acid strength, and that for acids with an aqueous pK(a) below approximately zero, the hydrolysis reaction is significantly faster than the degradation of glucose, thus allowing hydrolysis to be performed with a high selectivity in glucose. In tests with soluble cellulose, hemicellulose (xylan), and lignocellulosic biomass (Miscanthus grass), comparable hydrolysis rates were observed with bond scission occurring randomly along the biopolymer chains, in contrast to end-group hydrolysis observed with aqueous acids.
Resumo:
The kinetics of the alkaline hydrolysis of trinitrotoluene, TNT, in an aqueous solution is a possible approach to destroying the active agent in unwanted munitions. The kinetics are shown to have a rapid initial step, step A, in which a highly coloured species, X (lambda(max) = 450 nm) is formed via an equilibrium reaction: TNT + OH- double left right arrow X. The bimolecular rate constant for the forward part of this equilibrium process, k(1), is: 0.099 +/- 0.004, 0.32 +/- 0.02 and 1.27 +/- 0.05 dm(3) mol(-1) s(-1), at 25, 40 and 60degreesC, respectively. The activation energy for the forward process is 60 kJ mol(-1). The first-order rate constant for the reverse of this process, k(-1), is: (5.3 +/- 2.6) x 10(-4), (1.2 +/- 1.0) x 10(-3) and (7.7 +/- 2.9) x 10(-3) s(-1) at 25, 40 and 60degreesC, respectively. The activation energy for the overall equilibrium process (k(1)/k(-1)) is ca. -5 kJ mol(-1). The subsequent alkaline hydrolysis of X to form the final product P, i.e. step B, is much slower than step A and appears to comprise two processes coupled in series, i.e. steps B1 (X +2OH(-) --> Z) and B2 (Z+OH- --> P). At 25degreesC, Step B1 appears rate determining throughout the decay process. At 45 degreesC and, more so, at 60degreesC, step B appears increasingly biphasic with increasing alkaline concentrations, as step B2 begins to compete with step B1 for position as the rate determining step. The trimolecular rate constant for step B1 is: 0.017 +/- 0.001, 0.0085 +/- 0.0002 and 0.0011 +/- 0.0001 dm(6) mol(-2) s(-1) at 25, 40 and 60degreesC, respectively, and the process has an activation energy of 64 kJ mol(-1). The transition from uniform kinetics, described by step B1, to mixed kinetics, described by steps B1 and B2, as the reaction temperature and alkali concentration are increased most likely occurs because (a) step B2 has a lower activation energy than B1, although it was not possible to measure the former parameter, and (b) step B2 has a lower (1st) order dependence upon [OH-] compared with that of step B1 (2nd). The bimolecular rate constant for step B2 is 0.0035 +/- 0.03 dm(3) mol(-1) s(-1) at 60degreesC. A brief NMR study of the initial hydrolysis product in water, acetone and chloroform, coupled with UV/visible spectra, provides evidence that species X is a Meisenheimer complex.
Resumo:
Herein we report the synthesis, characterisation and hydrolytic release kinetics of a suite of novel, polymerisable ester quinolone conjugates with varying alkenyl chain lengths. Hydrolysis was shown to proceed up to 17-fold faster upon elevation of pH from neutral to pH 9.29, making these conjugates attractive for the development of 'designer' infection-resistant urinary biomaterials exploiting the increase in urine pH reported at the onset of catheter-associated infection to trigger drug release. (C) 2013 Elsevier Ltd. All rights reserved.