1000 resultados para Hopfield network
Resumo:
This paper gives a condition for the global stability of a continuous-time hopfield neural network when its activation function maybe not monotonically increasing.
Resumo:
A dynamic recurrent neural network (DRNN) that can be viewed as a generalisation of the Hopfield neural network is proposed to identify and control a class of control affine systems. In this approach, the identified network is used in the context of the differential geometric control to synthesise a state feedback that cancels the nonlinear terms of the plant yielding a linear plant which can then be controlled using a standard PID controller.
Resumo:
This paper presents an efficient neural network for solving constrained nonlinear optimization problems. More specifically, a two-stage neural network architecture is developed and its internal parameters are computed using the valid-subspace technique. The main advantage of the developed network is that it treats optimization and constraint terms in different stages with no interference with each other. Moreover, the proposed approach does not require specification of penalty or weighting parameters for its initialization.
Resumo:
Il Modello di Hopfield è un tentativo di modellizzare il comportamento di una memoria associativa come proprietà emergente di un network costituito da unità a due stati interagenti tra loro, e costituisce un esempio di come gli strumenti della meccanica statistica possano essere applicati anche al campo delle reti neurali. Nel presente elaborato viene esposta l'analogia tra il Modello di Hopfield e il Modello di Ising nel contesto delle transizioni di fase, applicando a entrambi i modelli la teoria di campo medio. Viene esposta la dinamica a temperatura finita e ricavata e risolta l'equazione di punto a sella per il limite di non saturazione del Modello di Hopfield. Vengono inoltre accennate le principali estensioni del Modello di Hopfield.