882 resultados para Hand gesture recognition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

New low cost sensors and the new open free libraries for 3D image processing are permitting to achieve important advances for robot vision applications such as tridimensional object recognition, semantic mapping, navigation and localization of robots, human detection and/or gesture recognition for human-machine interaction. In this paper, a method to recognize the human hand and to track the fingers is proposed. This new method is based on point clouds from range images, RGBD. It does not require visual marks, camera calibration, environment knowledge and complex expensive acquisition systems. Furthermore, this method has been implemented to create a human interface in order to move a robot hand. The human hand is recognized and the movement of the fingers is analyzed. Afterwards, it is imitated from a Barret hand, using communication events programmed from ROS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New low cost sensors and open free libraries for 3D image processing are making important advances in robot vision applications possible, such as three-dimensional object recognition, semantic mapping, navigation and localization of robots, human detection and/or gesture recognition for human-machine interaction. In this paper, a novel method for recognizing and tracking the fingers of a human hand is presented. This method is based on point clouds from range images captured by a RGBD sensor. It works in real time and it does not require visual marks, camera calibration or previous knowledge of the environment. Moreover, it works successfully even when multiple objects appear in the scene or when the ambient light is changed. Furthermore, this method was designed to develop a human interface to control domestic or industrial devices, remotely. In this paper, the method was tested by operating a robotic hand. Firstly, the human hand was recognized and the fingers were detected. Secondly, the movement of the fingers was analysed and mapped to be imitated by a robotic hand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recognising the laterality of a pictured hand involves making an initial decision and confirming that choice by mentally moving one's own hand to match the picture. This depends on an intact body schema. Because patients with complex regional pain syndrome type 1 (CRPS1) take longer to recognise a hand's laterality when it corresponds to their affected hand, it has been proposed that nociceptive input disrupts the body schema. However, chronic pain is associated with physiological and psychosocial complexities that may also explain the results. In three studies, we investigated whether the effect is simply due to nociceptive input. Study one evaluated the temporal and perceptual characteristics of acute hand pain elicited by intramuscular injection of hypertonic saline into the thenar eminence. In studies two and three, subjects performed a hand laterality recognition task before, during, and after acute experimental hand pain, and experimental elbow pain, respectively. During hand pain and during elbow pain, when the laterality of the pictured hand corresponded to the painful side, there was no effect on response time (RT). That suggests that nociceptive input alone is not sufficient to disrupt the working body schema. Conversely to patients with CRPS1, when the laterality of the pictured hand corresponded to the non-painful hand, RT increased similar to 380 ms (95% confidence interval 190 ms-590 ms). The results highlight the differences between acute and chronic pain and may reflect a bias in information processing in acute pain toward the affected part.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Dissertação de Mestrado em Engenharia Informática 2º Semestre, 2011/2012

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Public Display Systems (PDS) increasingly have a greater presence in our cities. These systems provide information and advertising specifically tailored to audiences in spaces such as airports, train stations, and shopping centers. A large number of public displays are also being deployed for entertainment reasons. Sometimes designing and prototyping PDS come to be a laborious, complex and a costly task. This dissertation focuses on the design and evaluation of PDS at early development phases with the aim of facilitating low-effort, rapid design and the evaluation of interactive PDS. This study focuses on the IPED Toolkit. This tool proposes the design, prototype, and evaluation of public display systems, replicating real-world scenes in the lab. This research aims at identifying benefits and drawbacks on the use of different means to place overlays/virtual displays above a panoramic video footage, recorded at real-world locations. The means of interaction studied in this work are on the one hand the keyboard and mouse, and on the other hand the tablet with two different techniques of use. To carry out this study, an android application has been developed whose function is to allow users to interact with the IPED Toolkit using the tablet. Additionally, the toolkit has been modified and adapted to tablets by using different web technologies. Finally the users study makes a comparison about the different means of interaction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gesture-based applications have particularities, since users interact in a natural way, much as they interact in the non-digital world. Hence, new requirements are needed on the software design process. This paper shows a software development process model for these applications, including requirement specification, design, implementation, and testing procedures. The steps and activities of the proposed model were tested through a game case study, which is a puzzle game. The puzzle is completed when all pieces of a painting are correctly positioned by the drag and drop action of users hand gesture. It also shows the results obtained of applying a heuristic evaluation on this game. © 2012 IEEE.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

[EN]In this paper a system for face recognition from a tabula rasa (i.e. blank slate) perspective is described. A priori, the system has the only ability to detect automatically faces and represent them in a space of reduced dimension. Later, the system is exposed to over 400 different identities, observing its recognition performance evolution. The preliminary results achieved indicate on the one side that the system is able to reject most of unknown individuals after an initialization stage.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Schizophrenia patients frequently present with subtle motor impairments, including higher order motor function such as hand gesture performance. Using cut off scores from a standardized gesture test, we previously reported gesture deficits in 40% of schizophrenia patients irrespective of the gesture content. However, these findings were based on normative data from an older control group. Hence, we now aimed at determining cut-off scores in an age and gender matched control group. Furthermore, we wanted to explore whether gesture categories are differentially affected in Schizophrenia. Gesture performance data of 30 schizophrenia patients and data from 30 matched controls were compared. Categories included meaningless, intransitive (communicative) and transitive (object related) hand gestures, which were either imitated or pantomimed, i.e. produced on verbal command. Cut-off scores of the age matched control group were higher than the previous cut-off scores in an older control group. An ANOVA tested effects of group, domain (imitation or pantomime), and semantic category (meaningless, transitive or intransitive), as well as their interaction. According to the new cut-off scores, 67% of the schizophrenia patients demonstrated gestural deficits. Patients performed worse in all gesture categories, however meaningless gestures on verbal command were particularly impaired (p = 0.008). This category correlated with poor frontal lobe function (p < 0.001). In conclusion, gestural deficits in schizophrenia are even more frequent than previously reported. Gesture categories that pose higher demands on planning and selection such as pantomime of meaningless gestures are predominantly affected and associated with the well-known frontal lobe dysfunction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Schizophrenia patients are severely impaired in nonverbal communication, including social perception and gesture production. However, the impact of nonverbal social perception on gestural behavior remains unknown, as is the contribution of negative symptoms, working memory, and abnormal motor behavior. Thus, the study tested whether poor nonverbal social perception was related to impaired gesture performance, gestural knowledge, or motor abnormalities. Forty-six patients with schizophrenia (80%), schizophreniform (15%), or schizoaffective disorder (5%) and 44 healthy controls matched for age, gender, and education were included. Participants completed 4 tasks on nonverbal communication including nonverbal social perception, gesture performance, gesture recognition, and tool use. In addition, they underwent comprehensive clinical and motor assessments. Patients presented impaired nonverbal communication in all tasks compared with controls. Furthermore, in contrast to controls, performance in patients was highly correlated between tasks, not explained by supramodal cognitive deficits such as working memory. Schizophrenia patients with impaired gesture performance also demonstrated poor nonverbal social perception, gestural knowledge, and tool use. Importantly, motor/frontal abnormalities negatively mediated the strong association between nonverbal social perception and gesture performance. The factors negative symptoms and antipsychotic dosage were unrelated to the nonverbal tasks. The study confirmed a generalized nonverbal communication deficit in schizophrenia. Specifically, the findings suggested that nonverbal social perception in schizophrenia has a relevant impact on gestural impairment beyond the negative influence of motor/frontal abnormalities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Applying biometrics to daily scenarios involves demanding requirements in terms of software and hardware. On the contrary, current biometric techniques are also being adapted to present-day devices, like mobile phones, laptops and the like, which are far from meeting the previous stated requirements. In fact, achieving a combination of both necessities is one of the most difficult problems at present in biometrics. Therefore, this paper presents a segmentation algorithm able to provide suitable solutions in terms of precision for hand biometric recognition, considering a wide range of backgrounds like carpets, glass, grass, mud, pavement, plastic, tiles or wood. Results highlight that segmentation accuracy is carried out with high rates of precision (F-measure 88%)), presenting competitive time results when compared to state-of-the-art segmentation algorithms time performance

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Los sensores inerciales (acelerómetros y giróscopos) se han ido introduciendo poco a poco en dispositivos que usamos en nuestra vida diaria gracias a su minituarización. Hoy en día todos los smartphones contienen como mínimo un acelerómetro y un magnetómetro, siendo complementados en losmás modernos por giróscopos y barómetros. Esto, unido a la proliferación de los smartphones ha hecho viable el diseño de sistemas basados en las medidas de sensores que el usuario lleva colocados en alguna parte del cuerpo (que en un futuro estarán contenidos en tejidos inteligentes) o los integrados en su móvil. El papel de estos sensores se ha convertido en fundamental para el desarrollo de aplicaciones contextuales y de inteligencia ambiental. Algunos ejemplos son el control de los ejercicios de rehabilitación o la oferta de información referente al sitio turístico que se está visitando. El trabajo de esta tesis contribuye a explorar las posibilidades que ofrecen los sensores inerciales para el apoyo a la detección de actividad y la mejora de la precisión de servicios de localización para peatones. En lo referente al reconocimiento de la actividad que desarrolla un usuario, se ha explorado el uso de los sensores integrados en los dispositivos móviles de última generación (luz y proximidad, acelerómetro, giróscopo y magnetómetro). Las actividades objetivo son conocidas como ‘atómicas’ (andar a distintas velocidades, estar de pie, correr, estar sentado), esto es, actividades que constituyen unidades de actividades más complejas como pueden ser lavar los platos o ir al trabajo. De este modo, se usan algoritmos de clasificación sencillos que puedan ser integrados en un móvil como el Naïve Bayes, Tablas y Árboles de Decisión. Además, se pretende igualmente detectar la posición en la que el usuario lleva el móvil, no sólo con el objetivo de utilizar esa información para elegir un clasificador entrenado sólo con datos recogidos en la posición correspondiente (estrategia que mejora los resultados de estimación de la actividad), sino también para la generación de un evento que puede producir la ejecución de una acción. Finalmente, el trabajo incluye un análisis de las prestaciones de la clasificación variando el tipo de parámetros y el número de sensores usados y teniendo en cuenta no sólo la precisión de la clasificación sino también la carga computacional. Por otra parte, se ha propuesto un algoritmo basado en la cuenta de pasos utilizando informaiii ción proveniente de un acelerómetro colocado en el pie del usuario. El objetivo final es detectar la actividad que el usuario está haciendo junto con la estimación aproximada de la distancia recorrida. El algoritmo de cuenta pasos se basa en la detección de máximos y mínimos usando ventanas temporales y umbrales sin requerir información específica del usuario. El ámbito de seguimiento de peatones en interiores es interesante por la falta de un estándar de localización en este tipo de entornos. Se ha diseñado un filtro extendido de Kalman centralizado y ligeramente acoplado para fusionar la información medida por un acelerómetro colocado en el pie del usuario con medidas de posición. Se han aplicado también diferentes técnicas de corrección de errores como las de velocidad cero que se basan en la detección de los instantes en los que el pie está apoyado en el suelo. Los resultados han sido obtenidos en entornos interiores usando las posiciones estimadas por un sistema de triangulación basado en la medida de la potencia recibida (RSS) y GPS en exteriores. Finalmente, se han implementado algunas aplicaciones que prueban la utilidad del trabajo desarrollado. En primer lugar se ha considerado una aplicación de monitorización de actividad que proporciona al usuario información sobre el nivel de actividad que realiza durante un período de tiempo. El objetivo final es favorecer el cambio de comportamientos sedentarios, consiguiendo hábitos saludables. Se han desarrollado dos versiones de esta aplicación. En el primer caso se ha integrado el algoritmo de cuenta pasos en una plataforma OSGi móvil adquiriendo los datos de un acelerómetro Bluetooth colocado en el pie. En el segundo caso se ha creado la misma aplicación utilizando las implementaciones de los clasificadores en un dispositivo Android. Por otro lado, se ha planteado el diseño de una aplicación para la creación automática de un diario de viaje a partir de la detección de eventos importantes. Esta aplicación toma como entrada la información procedente de la estimación de actividad y de localización además de información almacenada en bases de datos abiertas (fotos, información sobre sitios) e información sobre sensores reales y virtuales (agenda, cámara, etc.) del móvil. Abstract Inertial sensors (accelerometers and gyroscopes) have been gradually embedded in the devices that people use in their daily lives thanks to their miniaturization. Nowadays all smartphones have at least one embedded magnetometer and accelerometer, containing the most upto- date ones gyroscopes and barometers. This issue, together with the fact that the penetration of smartphones is growing steadily, has made possible the design of systems that rely on the information gathered by wearable sensors (in the future contained in smart textiles) or inertial sensors embedded in a smartphone. The role of these sensors has become key to the development of context-aware and ambient intelligent applications. Some examples are the performance of rehabilitation exercises, the provision of information related to the place that the user is visiting or the interaction with objects by gesture recognition. The work of this thesis contributes to explore to which extent this kind of sensors can be useful to support activity recognition and pedestrian tracking, which have been proven to be essential for these applications. Regarding the recognition of the activity that a user performs, the use of sensors embedded in a smartphone (proximity and light sensors, gyroscopes, magnetometers and accelerometers) has been explored. The activities that are detected belong to the group of the ones known as ‘atomic’ activities (e.g. walking at different paces, running, standing), that is, activities or movements that are part of more complex activities such as doing the dishes or commuting. Simple, wellknown classifiers that can run embedded in a smartphone have been tested, such as Naïve Bayes, Decision Tables and Trees. In addition to this, another aim is to estimate the on-body position in which the user is carrying the mobile phone. The objective is not only to choose a classifier that has been trained with the corresponding data in order to enhance the classification but also to start actions. Finally, the performance of the different classifiers is analysed, taking into consideration different features and number of sensors. The computational and memory load of the classifiers is also measured. On the other hand, an algorithm based on step counting has been proposed. The acceleration information is provided by an accelerometer placed on the foot. The aim is to detect the activity that the user is performing together with the estimation of the distance covered. The step counting strategy is based on detecting minima and its corresponding maxima. Although the counting strategy is not innovative (it includes time windows and amplitude thresholds to prevent under or overestimation) no user-specific information is required. The field of pedestrian tracking is crucial due to the lack of a localization standard for this kind of environments. A loosely-coupled centralized Extended Kalman Filter has been proposed to perform the fusion of inertial and position measurements. Zero velocity updates have been applied whenever the foot is detected to be placed on the ground. The results have been obtained in indoor environments using a triangulation algorithm based on RSS measurements and GPS outdoors. Finally, some applications have been designed to test the usefulness of the work. The first one is called the ‘Activity Monitor’ whose aim is to prevent sedentary behaviours and to modify habits to achieve desired objectives of activity level. Two different versions of the application have been implemented. The first one uses the activity estimation based on the step counting algorithm, which has been integrated in an OSGi mobile framework acquiring the data from a Bluetooth accelerometer placed on the foot of the individual. The second one uses activity classifiers embedded in an Android smartphone. On the other hand, the design of a ‘Travel Logbook’ has been planned. The input of this application is the information provided by the activity and localization modules, external databases (e.g. pictures, points of interest, weather) and mobile embedded and virtual sensors (agenda, camera, etc.). The aim is to detect important events in the journey and gather the information necessary to store it as a journal page.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

En los últimos años, ha crecido de forma significativa el interés por la utilización de dispositivos capaces de reconocer gestos humanos. En este trabajo, se pretenden reconocer gestos manuales colocando sensores en la mano de una persona. El reconocimiento de gestos manuales puede ser implementado para diversos usos y bajo diversas plataformas: juegos (Wii), control de brazos robóticos, etc. Como primer paso, se realizará un estudio de las actuales técnicas de reconocimiento de gestos que utilizan acelerómetros como sensor de medida. En un segundo paso, se estudiará como los acelerómetros pueden utilizarse para intentar reconocer los gestos que puedan realizar una persona (mover el brazo hacia un lado, girar la mano, dibujar un cuadrado, etc.) y los problemas que de su utilización puedan derivarse. Se ha utilizado una IMU (Inertial Measurement Unit) como sensor de medida. Está compuesta por tres acelerómetros y tres giróscopos (MTi-300 de Xsens). Con las medidas que proporcionan estos sensores se realiza el cálculo de la posición y orientación de la mano, representando esta última en función de los ángulos de Euler. Un aspecto importante a destacar será el efecto de la gravedad en las medidas de las aceleraciones. A través de diversos cálculos y mediante la ayuda de los giróscopos se podrá corregir dicho efecto. Por último, se desarrollará un sistema que identifique la posición y orientación de la mano como gestos reconocidos utilizando lógica difusa. Tanto para la adquisición de las muestras, como para los cálculos de posicionamiento, se ha desarrollado un código con el programa Matlab. También, con este mismo software, se ha implementado un sistema de lógica difusa con la que se realizará el reconocimiento de los gestos, utilizando la herramienta FIS Editor. Las pruebas realizadas han consistido en la ejecución de nueve gestos por diferentes personas teniendo una tasa de reconocimiento comprendida entre el 90 % y 100 % dependiendo del gesto a identificar. ABSTRACT In recent years, it has grown significantly interest in the use of devices capable of recognizing human gestures. In this work, we aim to recognize hand gestures placing sensors on the hand of a person. The recognition of hand gestures can be implemented for different applications on different platforms: games (Wii), control of robotic arms ... As a first step, a study of current gesture recognition techniques that use accelerometers and sensor measurement is performed. In a second step, we study how accelerometers can be used to try to recognize the gestures that can make a person (moving the arm to the side, rotate the hand, draw a square, etc...) And the problems of its use can be derived. We used an IMU (Inertial Measurement Unit) as a measuring sensor. It comprises three accelerometers and three gyroscopes (Xsens MTI-300). The measures provided by these sensors to calculate the position and orientation of the hand are made, with the latter depending on the Euler angles. An important aspect to note is the effect of gravity on the measurements of the accelerations. Through various calculations and with the help of the gyroscopes can correct this effect. Finally, a system that identifies the position and orientation of the hand as recognized gestures developed using fuzzy logic. Both the acquisition of samples to calculate position, a code was developed with Matlab program. Also, with the same software, has implemented a fuzzy logic system to be held with the recognition of gestures using the FIS Editor. Tests have involved the execution of nine gestures by different people having a recognition rate between 90% and 100% depending on the gesture to identify.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents the implementation of a robust grasp mapping between a 3-finger haptic device (master) and a robotic hand (slave). Mapping is based on a grasp equivalence defined considering the manipulation capabilities of the master and slave devices. The metrics that translate the human hand gesture to the robotic hand workspace are obtained through an analytical user study. This allows a natural control of the robotic hand. The grasp mapping is accomplished defining 4 control modes that encapsulate all the grasps gestures considered.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Il riconoscimento delle gesture è un tema di ricerca che sta acquisendo sempre più popolarità, specialmente negli ultimi anni, grazie ai progressi tecnologici dei dispositivi embedded e dei sensori. Lo scopo di questa tesi è quello di utilizzare alcune tecniche di machine learning per realizzare un sistema in grado di riconoscere e classificare in tempo reale i gesti delle mani, a partire dai segnali mioelettrici (EMG) prodotti dai muscoli. Inoltre, per consentire il riconoscimento di movimenti spaziali complessi, verranno elaborati anche segnali di tipo inerziale, provenienti da una Inertial Measurement Unit (IMU) provvista di accelerometro, giroscopio e magnetometro. La prima parte della tesi, oltre ad offrire una panoramica sui dispositivi wearable e sui sensori, si occuperà di analizzare alcune tecniche per la classificazione di sequenze temporali, evidenziandone vantaggi e svantaggi. In particolare, verranno considerati approcci basati su Dynamic Time Warping (DTW), Hidden Markov Models (HMM), e reti neurali ricorrenti (RNN) di tipo Long Short-Term Memory (LSTM), che rappresentano una delle ultime evoluzioni nel campo del deep learning. La seconda parte, invece, riguarderà il progetto vero e proprio. Verrà impiegato il dispositivo wearable Myo di Thalmic Labs come caso di studio, e saranno applicate nel dettaglio le tecniche basate su DTW e HMM per progettare e realizzare un framework in grado di eseguire il riconoscimento real-time di gesture. Il capitolo finale mostrerà i risultati ottenuti (fornendo anche un confronto tra le tecniche analizzate), sia per la classificazione di gesture isolate che per il riconoscimento in tempo reale.