993 resultados para GENERAL-RELATIVITY
Resumo:
The kinematic approach to cosmological tests provides direct evidence to the present accelerating stage of the Universe that does not depend on the validity of general relativity, as well as on the matter-energy content of the Universe. In this context, we consider here a linear two-parameter expansion for the decelerating parameter, q(z)=q(0)+q(1)z, where q(0) and q(1) are arbitrary constants to be constrained by the union supernovae data. By assuming a flat Universe we find that the best fit to the pair of free parameters is (q(0),q(1))=(-0.73,1.5) whereas the transition redshift is z(t)=0.49(-0.07)(+0.14)(1 sigma) +0.54-0.12(2 sigma). This kinematic result is in agreement with some independent analyses and more easily accommodates many dynamical flat models (like Lambda CDM).
Resumo:
We investigate bouncing solutions in the framework of the nonsingular gravity model of Brandenberger, Mukhanov and Sornborger. We show that a spatially flat universe filled with ordinary matter undergoing a phase of contraction reaches a stage of minimal expansion factor before bouncing in a regular way to reach the expanding phase. The expansion can be connected to the usual radiation-and matter-dominated epochs before reaching a final expanding de Sitter phase. In general relativity (GR), a bounce can only take place provided that the spatial sections are positively curved, a fact that has been shown to translate into a constraint on the characteristic duration of the bounce. In our model, on the other hand, a bounce can occur also in the absence of spatial curvature, which means that the time scale for the bounce can be made arbitrarily short or long. The implication is that constraints on the bounce characteristic time obtained in GR rely heavily on the assumed theory of gravity. Although the model we investigate is fourth order in the derivatives of the metric (and therefore unstable vis-a-vis the perturbations), this generic bounce dynamics should extend to string-motivated nonsingular models which can accommodate a spatially flat bounce.
Resumo:
The abundance and distribution of collapsed objects such as galaxy clusters will become an important tool to investigate the nature of dark energy and dark matter. Number counts of very massive objects are sensitive not only to the equation of state of dark energy, which parametrizes the smooth component of its pressure, but also to the sound speed of dark energy, which determines the amount of pressure in inhomogeneous and collapsed structures. Since the evolution of these structures must be followed well into the nonlinear regime, and a fully relativistic framework for this regime does not exist yet, we compare two approximate schemes: the widely used spherical collapse model and the pseudo-Newtonian approach. We show that both approximation schemes convey identical equations for the density contrast, when the pressure perturbation of dark energy is parametrized in terms of an effective sound speed. We also make a comparison of these approximate approaches to general relativity in the linearized regime, which lends some support to the approximations.
Resumo:
We consider the gravitational recoil due to nonreflection-symmetric gravitational wave emission in the context of axisymmetric Robinson-Trautman spacetimes. We show that regular initial data evolve generically into a final configuration corresponding to a Schwarzschild black hole moving with constant speed. For the case of (reflection-)symmetric initial configurations, the mass of the remnant black hole and the total energy radiated away are completely determined by the initial data, allowing us to obtain analytical expressions for some recent numerical results that have appeared in the literature. Moreover, by using the Galerkin spectral method to analyze the nonlinear regime of the Robinson-Trautman equations, we show that the recoil velocity can be estimated with good accuracy from some asymmetry measures (namely the first odd moments) of the initial data. The extension for the nonaxisymmetric case and the implications of our results for realistic situations involving head-on collision of two black holes are also discussed.
Resumo:
The AdS/CFT duality has established a mapping between quantities in the bulk AdS black-hole physics and observables in a boundary finite-temperature field theory. Such a relationship appears to be valid for an arbitrary number of spacetime dimensions, extrapolating the original formulations of Maldacena`s correspondence. In the same sense properties like the hydrodynamic behavior of AdS black-hole fluctuations have been proved to be universal. We investigate in this work the complete quasinormal spectra of gravitational perturbations of d-dimensional plane-symmetric AdS black holes (black branes). Holographically the frequencies of the quasinormal modes correspond to the poles of two-point correlation functions of the field-theory stress-energy tensor. The important issue of the correct boundary condition to be imposed on the gauge-invariant perturbation fields at the AdS boundary is studied and elucidated in a fully d-dimensional context. We obtain the dispersion relations of the first few modes in the low-, intermediate- and high-wavenumber regimes. The sound-wave (shear-mode) behavior of scalar (vector)-type low- frequency quasinormal mode is analytically and numerically confirmed. These results are found employing both a power series method and a direct numerical integration scheme.
Resumo:
Em 1922, o físico-matemático brasileiro Amoroso Costa publicou um livro de introdução à Teoria da Relatividade. Este livro, um dos primeiros textos sobre o assunto no mundo, surpreende ainda hoje pela sua limpidez, precisão e concisão. Fazemos uma análise do texto de Amoroso Costa, situando-o no contexto científico mundial e brasileiro.
Resumo:
Conformally flat spacetimes with an elastic stress energy tensor having diagonal trace-free anisotropic pressure are investigated using 1+3 formalism. The 1+3 Bianchi and Jacobi identities and Einstein field equations are written for a particular case with a conformal factor dependent on only one spatial coordinate. Solutions with non null anisotropic pressure are obtained.
Resumo:
For any vacuum initial data set, we define a local, non-negative scalar quantity which vanishes at every point of the data hypersurface if and only if the data are Kerr initial data. Our scalar quantity only depends on the quantities used to construct the vacuum initial data set which are the Riemannian metric defined on the initial data hypersurface and a symmetric tensor which plays the role of the second fundamental form of the embedded initial data hypersurface. The dependency is algorithmic in the sense that given the initial data one can compute the scalar quantity by algebraic and differential manipulations, being thus suitable for an implementation in a numerical code. The scalar could also be useful in studies of the non-linear stability of the Kerr solution because it serves to measure the deviation of a vacuum initial data set from the Kerr initial data in a local and algorithmic way.
Resumo:
We survey results about exact cylindrically symmetric models of gravitational collapse in General Relativity. We focus on models which result from the matching of two spacetimes having collapsing interiors which develop trapped surfaces and vacuum exteriors containing gravitational waves. We collect some theorems from the literature which help to decide a priori about eventual spacetime matchings. We revise, in more detail, some toy models which include some of the main mathematical and physical issues that arise in this context, and compute the gravitational energy flux through the matching boundary of a particular collapsing region. Along the way, we point out several interesting open problems.
Resumo:
The present thesis is a contribution to the debate on the applicability of mathematics; it examines the interplay between mathematics and the world, using historical case studies. The first part of the thesis consists of four small case studies. In chapter 1, I criticize "ante rem structuralism", proposed by Stewart Shapiro, by showing that his so-called "finite cardinal structures" are in conflict with mathematical practice. In chapter 2, I discuss Leonhard Euler's solution to the Königsberg bridges problem. I propose interpreting Euler's solution both as an explanation within mathematics and as a scientific explanation. I put the insights from the historical case to work against recent philosophical accounts of the Königsberg case. In chapter 3, I analyze the predator-prey model, proposed by Lotka and Volterra. I extract some interesting philosophical lessons from Volterra's original account of the model, such as: Volterra's remarks on mathematical methodology; the relation between mathematics and idealization in the construction of the model; some relevant details in the derivation of the Third Law, and; notions of intervention that are motivated by one of Volterra's main mathematical tools, phase spaces. In chapter 4, I discuss scientific and mathematical attempts to explain the structure of the bee's honeycomb. In the first part, I discuss a candidate explanation, based on the mathematical Honeycomb Conjecture, presented in Lyon and Colyvan (2008). I argue that this explanation is not scientifically adequate. In the second part, I discuss other mathematical, physical and biological studies that could contribute to an explanation of the bee's honeycomb. The upshot is that most of the relevant mathematics is not yet sufficiently understood, and there is also an ongoing debate as to the biological details of the construction of the bee's honeycomb. The second part of the thesis is a bigger case study from physics: the genesis of GR. Chapter 5 is a short introduction to the history, physics and mathematics that is relevant to the genesis of general relativity (GR). Chapter 6 discusses the historical question as to what Marcel Grossmann contributed to the genesis of GR. I will examine the so-called "Entwurf" paper, an important joint publication by Einstein and Grossmann, containing the first tensorial formulation of GR. By comparing Grossmann's part with the mathematical theories he used, we can gain a better understanding of what is involved in the first steps of assimilating a mathematical theory to a physical question. In chapter 7, I introduce, and discuss, a recent account of the applicability of mathematics to the world, the Inferential Conception (IC), proposed by Bueno and Colyvan (2011). I give a short exposition of the IC, offer some critical remarks on the account, discuss potential philosophical objections, and I propose some extensions of the IC. In chapter 8, I put the Inferential Conception (IC) to work in the historical case study: the genesis of GR. I analyze three historical episodes, using the conceptual apparatus provided by the IC. In episode one, I investigate how the starting point of the application process, the "assumed structure", is chosen. Then I analyze two small application cycles that led to revisions of the initial assumed structure. In episode two, I examine how the application of "new" mathematics - the application of the Absolute Differential Calculus (ADC) to gravitational theory - meshes with the IC. In episode three, I take a closer look at two of Einstein's failed attempts to find a suitable differential operator for the field equations, and apply the conceptual tools provided by the IC so as to better understand why he erroneously rejected both the Ricci tensor and the November tensor in the Zurich Notebook.
Resumo:
Estudi realitzat a partir d’una estada al Physics Department de la New York University, United States, Estats Units, entre 2006 i 2008. Una de les observacions de més impacte en la cosmologia moderna ha estat la determinació empírica que l’Univers es troba actualment en una fase d’Expansió Accelerada (EA). Aquest fenòmen implica que o bé l’Univers està dominat per un nou sector de matèria/energia, o bé la Relativitat General deixa de tenir validesa a escales cosmològiques. La primera possibilitat comprèn els models d’Energia Fosca (EF), i el seu principal problema és que l’EF ha de tenir propietats tan especials que es fan difícils de justificar teòricament. La segona possibilitat requereix la construcció de teories consistents de Gravetat Modificada a Grans Distàncies (GMGD), que són una generalització dels models de gravetat massiva. L’interès fenomenològic per aquestes teories també va resorgir amb l’aparició dels primers exemples de models de GMGD, com ara el model de Dvali, Gabadadze i Porrati (DGP), que consisteix en un tipus de brana en una dimensió extra. Malauradament, però, aquest model no permet explicar de forma consistent l’EA de l’Univers. Un dels objectius d’aquest projecte ha estat establir la viabilitat interna i fenomenològica dels models de GMGD. Des del punt de vista fenomenològic, ens hem centrat en la questió més important a la pràctica: trobar signatures observacionals que permetin distingir els models de GMGD dels d’EF. A nivell més teòric, també hem investigat el significat de les inestabilitats del model DGP.L’altre gran objectiu que ens vam proposar va ser la construcció de noves teories de GMGD. En la segona part d’aquest projecte, hem elaborat i mostrat la consistència del model “DGP en Cascada”, que generalitza el model DGP a més dimensions extra, i representa el segon model consistent i invariant-Lorentz a l’espai pla conegut. L’existència d’altres models de GMGD més enllà de DGP és de gran interès atès que podria permetre obtenir l’EA de l’Univers de forma purament geomètrica.
Resumo:
La Teoria de la Relativitat General preveu que quan un objecte massiu és sotmès a una certa acceleració en certes condicions ha d’emetre ones gravitacionals. Es tracta d’un tipus d’on altament energètica però que interacciona amb la matèria de manera molt feble i el seu punt d’emissió és força llunyà. Per la qual cosa la seva detecció és una tasca extraordinàriament complicada. Conseqüentment, la detecció d’aquestes ones es creu molt més factible utilitzant instruments situats a l’espai. Amb aquest objectiu, neis la missió LISA (Laser Interferometer Space Antenna). Es tracta aquesta d’una missió conjunta entre la NASA i l’ESA amb llançament previst per 2020-2025. Per reduir els riscs que comporta una primera utilització de tecnologia no testejada, unit a l’alt cost econòmic de la missió LISA. Aquesta missió contindrà instruments molt avançats: el LTP (LISA Technoplogy Package), desenvolupat per la Unió Europea, que provarà la tecnologia de LISA i el Drag Free flying system, que s’encarregarà de provar una sèrie de propulsors (thrusters) utilitzats per al control d’actitud i posició de satèl•lit amb precisió de nanòmetres. Particularment, el LTP, està composat per dues masses de prova separades per 35 centímetres, i d’un interferòmetre làser que mesura la variació de la distància relativa entre elles. D’aquesta manera, el LTP mesurarà les prestacions dels equips i les possibles interferències que afecten a la mesura. Entre les fonts de soroll es troben, entre d’altres, el vent i pressió de radiació solar, les càrregues electrostàtiques, el gradient tèrmic, les fluctuacions de voltatge o les forces internes. Una de les possibles causes de soroll és aquella que serà l’objecte d’estudi en aquest projecte de tesi doctoral: la presència dintre del LTP de camps magnètics, que exerceixen una força sobre les masses de prova, la seva estimació i el seu control, prenent en compte les caracterírstiques magnètiques de l’experiment i la dinàmica del satèl•lit.
Resumo:
El nostre objectiu es l'estudi d'extensions de la Relativitat General i, en particular, estem interessats en les teories que continguin camps vectorials addicionals. En aquests tipus de teories es necessari imposar que el vector ha de tenir norma fixa per evitar la presència d'un fantasma o grau de llibertat amb terme cinètic negatiu, i això implica que la simetria Lorentz està trencada espontàniament. El camp del aether només interactua gravitatòriament i la seva presència es difícil de detectar, no obstant això, durant inflació les fluctuacions del buit a escales petites d'un camp lleuger pot deixar una empremta en observables com les anisotropies del fons de radiació de microones. Les fluctuacions del Einstein-aether es comporten com els camps sense massa i això fa que inflació generi modes de longitud de ona llarga en els sectors escalar i vectorial. Hem estudiat la signatura del Einstein-aether dins l'espectre de pertorbacions primordials lluny del límit de de Sitter de inflació. Aquests modes escalars i vectorials poden deixar una empremta significativa en la radiació de fons de microones en funció dels paràmetres del model. Les observacions del fons de radiació de microones imposen restriccions fenomenològiques que redueixen els límits existents per aquesta classe de teoria. Amb aquest estudi del aether també esperem millorar el coneixement que tenim de una classe més ampla de teories que exhibeixen el mateix tipus de trencament de simetria.
Resumo:
The dissertation investigates some relevant metaphysical issues arising in the context of spacetime theories. In particular, the inquiry focuses on general relativity and canonical quantum gravity. A formal definition of spacetime theory is proposed and, against this framework, an analysis of the notions of general covariance, symmetry and background independence is performed. It is argued that many conceptual issues in general relativity and canonical quantum gravity derive from putting excessive emphasis on general covariance as an ontological prin-ciple. An original metaphysical position grounded in scientific essential- ism and causal realism (weak essentialism) is developed and defended. It is argued that, in the context of general relativity, weak essentialism supports spacetime substantivalism. It is also shown that weak essentialism escapes arguments from metaphysical underdetermination by positing a particular kind of causation, dubbed geometric. The proposed interpretive framework is then applied to Bohmian mechanics, pointing out that weak essentialism nicely fits into this theory. In the end, a possible Bohmian implementation of loop quantum gravity is considered, and such a Bohmian approach is interpreted in a geometric causal fashion. Under this interpretation, Bohmian loop quantum gravity straightforwardly commits us to an ontology of elementary extensions of space whose evolution is described by a non-local law. The causal mechanism underlying this evolution clarifies many conceptual issues related to the emergence of classical spacetime from the quantum regime. Although there is as yet no fully worked out physical theory of quantum gravity, it is argued that the proposed approach sets up a standard that proposals for a serious ontology in this field should meet.
Resumo:
We study spacetime diffeomorphisms in the Hamiltonian and Lagrangian formalisms of generally covariant systems. We show that the gauge group for such a system is characterized by having generators which are projectable under the Legendre map. The gauge group is found to be much larger than the original group of spacetime diffeomorphisms, since its generators must depend on the lapse function and shift vector of the spacetime metric in a given coordinate patch. Our results are generalizations of earlier results by Salisbury and Sundermeyer. They arise in a natural way from using the requirement of equivalence between Lagrangian and Hamiltonian formulations of the system, and they are new in that the symmetries are realized on the full set of phase space variables. The generators are displayed explicitly and are applied to the relativistic string and to general relativity.