1000 resultados para GAUGE


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This PhD Thesis is about certain infinite-dimensional Grassmannian manifolds that arise naturally in geometry, representation theory and mathematical physics. From the physics point of view one encounters these infinite-dimensional manifolds when trying to understand the second quantization of fermions. The many particle Hilbert space of the second quantized fermions is called the fermionic Fock space. A typical element of the fermionic Fock space can be thought to be a linear combination of the configurations m particles and n anti-particles . Geometrically the fermionic Fock space can be constructed as holomorphic sections of a certain (dual)determinant line bundle lying over the so called restricted Grassmannian manifold, which is a typical example of an infinite-dimensional Grassmannian manifold one encounters in QFT. The construction should be compared with its well-known finite-dimensional analogue, where one realizes an exterior power of a finite-dimensional vector space as the space of holomorphic sections of a determinant line bundle lying over a finite-dimensional Grassmannian manifold. The connection with infinite-dimensional representation theory stems from the fact that the restricted Grassmannian manifold is an infinite-dimensional homogeneous (Kähler) manifold, i.e. it is of the form G/H where G is a certain infinite-dimensional Lie group and H its subgroup. A central extension of G acts on the total space of the dual determinant line bundle and also on the space its holomorphic sections; thus G admits a (projective) representation on the fermionic Fock space. This construction also induces the so called basic representation for loop groups (of compact groups), which in turn are vitally important in string theory / conformal field theory. The Thesis consists of three chapters: the first chapter is an introduction to the backround material and the other two chapters are individually written research articles. The first article deals in a new way with the well-known question in Yang-Mills theory, when can one lift the action of the gauge transformation group on the space of connection one forms to the total space of the Fock bundle in a compatible way with the second quantized Dirac operator. In general there is an obstruction to this (called the Mickelsson-Faddeev anomaly) and various geometric interpretations for this anomaly, using such things as group extensions and bundle gerbes, have been given earlier. In this work we give a new geometric interpretation for the Faddeev-Mickelsson anomaly in terms of differentiable gerbes (certain sheaves of categories) and central extensions of Lie groupoids. The second research article deals with the question how to define a Dirac-like operator on the restricted Grassmannian manifold, which is an infinite-dimensional space and hence not in the landscape of standard Dirac operator theory. The construction relies heavily on infinite-dimensional representation theory and one of the most technically demanding challenges is to be able to introduce proper normal orderings for certain infinite sums of operators in such a way that all divergences will disappear and the infinite sum will make sense as a well-defined operator acting on a suitable Hilbert space of spinors. This research article was motivated by a more extensive ongoing project to construct twisted K-theory classes in Yang-Mills theory via a Dirac-like operator on the restricted Grassmannian manifold.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has long been thought that tropical rainfall retrievals from satellites have large errors. Here we show, using a new daily 1 degree gridded rainfall data set based on about 1800 gauges from the India Meteorology Department (IMD), that modern satellite estimates are reasonably close to observed rainfall over the Indian monsoon region. Daily satellite rainfalls from the Global Precipitation Climatology Project (GPCP 1DD) and the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) are available since 1998. The high summer monsoon (June-September) rain over the Western Ghats and Himalayan foothills is captured in TMPA data. Away from hilly regions, the seasonal mean and intraseasonal variability of rainfall (averaged over regions of a few hundred kilometers linear dimension) from both satellite products are about 15% of observations. Satellite data generally underestimate both the mean and variability of rain, but the phase of intraseasonal variations is accurate. On synoptic timescales, TMPA gives reasonable depiction of the pattern and intensity of torrential rain from individual monsoon low-pressure systems and depressions. A pronounced biennial oscillation of seasonal total central India rain is seen in all three data sets, with GPCP 1DD being closest to IMD observations. The new satellite data are a promising resource for the study of tropical rainfall variability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The description of quarks and gluons, using the theory of quantum chromodynamics (QCD), has been known for a long time. Nevertheless, many fundamental questions in QCD remain unanswered. This is mainly due to problems in solving the theory at low energies, where the theory is strongly interacting. AdS/CFT is a duality between a specific string theory and a conformal field theory. Duality provides new tools to solve the conformal field theory in the strong coupling regime. There is also some evidence that using the duality, one can get at least qualitative understanding of how QCD behaves at strong coupling. In this thesis, we try to address some issues related to QCD and heavy ion collisions, applying the duality in various ways.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arguments arising from quantum mechanics and gravitation theory as well as from string theory, indicate that the description of space-time as a continuous manifold is not adequate at very short distances. An important candidate for the description of space-time at such scales is provided by noncommutative space-time where the coordinates are promoted to noncommuting operators. Thus, the study of quantum field theory in noncommutative space-time provides an interesting interface where ordinary field theoretic tools can be used to study the properties of quantum spacetime. The three original publications in this thesis encompass various aspects in the still developing area of noncommutative quantum field theory, ranging from fundamental concepts to model building. One of the key features of noncommutative space-time is the apparent loss of Lorentz invariance that has been addressed in different ways in the literature. One recently developed approach is to eliminate the Lorentz violating effects by integrating over the parameter of noncommutativity. Fundamental properties of such theories are investigated in this thesis. Another issue addressed is model building, which is difficult in the noncommutative setting due to severe restrictions on the possible gauge symmetries imposed by the noncommutativity of the space-time. Possible ways to relieve these restrictions are investigated and applied and a noncommutative version of the Minimal Supersymmetric Standard Model is presented. While putting the results obtained in the three original publications into their proper context, the introductory part of this thesis aims to provide an overview of the present situation in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present the results of a search for supersymmetry with gauge-mediated breaking and $\NONE\to\gamma\Gravitino$ in the $\gamma\gamma$+missing transverse energy final state. In 2.6$\pm$0.2 \invfb of $p{\bar p}$ collisions at $\sqrt{s}$$=$1.96 TeV recorded by the CDF II detector we observe no candidate events, consistent with a standard model background expectation of 1.4$\pm$0.4 events. We set limits on the cross section at the 95% C.L. and place the world's best limit of 149\gevc on the \none mass at $\tau_{\tilde{\chi}_1^0}$$

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An anomalous gauge theory can be reformulated in a gauge invariant way without any change in its physical content. This is demonstrated here for the exactly soluble chiral Schwinger model. Our gauge invariant version is very different from the Faddeev-Shatashvili proposal [L.D. Faddeev and S.L. Shatashvili, Theor. Math. Phys. 60 (1984) 206] and involves no additional gauge-group-valued fields. The status of the "gauge" A0=0 sometimes used in anomalous theories is also discussed and justified in our reformulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An anomalous multiflavor chiral theory, with the gauge group SU(N), is studied using non-Abelian bosonization. The theory can be made gauge invariant by introducing Wess-Zumino fields and it is particularly simple if the Jackiw-Rajaraman parameter equals 2. In the strong-coupling limit, the low-energy effective theory only contains light unconfined fermions which interact weakly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new fiber bundle approach to the gauge theory of a group G that involves space‐time symmetries as well as internal symmetries is presented. The ungauged group G is regarded as the group of left translations on a fiber bundle G(G/H,H), where H is a closed subgroup and G/H is space‐time. The Yang–Mills potential is the pullback of the Maurer–Cartan form and the Yang–Mills fields are zero. More general diffeomorphisms on the bundle space are then identified as the appropriate gauged generalizations of the left translations, and the Yang–Mills potential is identified as the pullback of the dual of a certain kind of vielbein on the group manifold. The Yang–Mills fields include a torsion on space‐time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We establish the Poincaré invariance of anomalous gauge theories in two dimensions, for both the Abelian and non-Abelian cases, in the canonical Hamiltonian formalism. It is shown that, despite the noncovariant appearance of the constraints of these theories, Poincaré generators can be constructed which obey the correct algebra and yield the correct transformations in the constrained space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A unified gauge theory of massless and massive spin-2 fields is of considerable current interest. The Poincaré gauge theories with quadratic Lagrangian are linearized, and the conditions on the parameters are found which will lead to viable linear theories with massive gauge particles. As well as the 2+ massless gravitons coming from the translational gauge potential, the rotational gauge potentials, in the linearized limit, give rise to 2+ and 2− particles of equal mass, as well as a massive pseudoscalar.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this thesis, the possibility of extending the Quantization Condition of Dirac for Magnetic Monopoles to noncommutative space-time is investigated. The three publications that this thesis is based on are all in direct link to this investigation. Noncommutative solitons have been found within certain noncommutative field theories, but it is not known whether they possesses only topological charge or also magnetic charge. This is a consequence of that the noncommutative topological charge need not coincide with the noncommutative magnetic charge, although they are equivalent in the commutative context. The aim of this work is to begin to fill this gap of knowledge. The method of investigation is perturbative and leaves open the question of whether a nonperturbative source for the magnetic monopole can be constructed, although some aspects of such a generalization are indicated. The main result is that while the noncommutative Aharonov-Bohm effect can be formulated in a gauge invariant way, the quantization condition of Dirac is not satisfied in the case of a perturbative source for the point-like magnetic monopole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A crack mouth opening displacement (CMOD) gauge has been designed to estimate the crack length as well as the crack opening stress level in an automated fatigue crack propagation test programme. The CMOD gauge accurately predicts crack tip opening levels in K-controlled tests with constant K, K increasing or K decreasing. In all three K-controlled tests with a single 100% overload cycle, the CMOD gauge does not measure the crack tip opening stress level over a large range of crack lengths after the application of the overload. The CMOD gauge measures the stress level at which the overload plastic zone site opens. Caution should thus be exercised in using the crack opening stress level, estimated by the CMOD gauge, to explain fatigue crack propagation under arbitrary load sequences from the viewpoint of crack closure phenomena.