964 resultados para Flow-mediated Dilatation
Resumo:
The role of endothelial progenitor cells (EPCs) in peripheral artery disease (PAD) remains unclear. We hypothesized that EPC mobilization and function play a central role in the development of endothelial dysfunction and directly influence the degree of atherosclerotic burden in peripheral artery vessels. The number of circulating EPCs, defined as CD34(+)/KDR(+) cells, were assessed by flow cytometry in 91 subjects classified according to a predefined sample size of 31 non-diabetic PAD patients, 30 diabetic PAD patients, and 30 healthy volunteers. Both PAD groups had undergone endovascular treatment in the past. As a functional parameter, EPC colony-forming units were determined ex vivo. Apart from a broad laboratory analysis, a series of clinical measures using the ankle-brachial index (ABI), flow-mediated dilatation (FMD) and carotid intima-media thickness (cIMT) were investigated. A significant reduction of EPC counts and proliferation indices in both PAD groups compared to healthy subjects were observed. Low EPC number and pathological findings in the clinical assessment were strongly correlated to the group allocation. Multivariate statistical analysis revealed these findings to be independent predictors of disease appearance. Linear regression analysis showed the ABI to be a predictor of circulating EPC number (p=0.02). Moreover, the functionality of EPCs was correlated by linear regression (p=0.017) to cIMT. The influence of diabetes mellitus on EPCs in our study has to be considered marginal in already disease-affected patients. This study demonstrated that EPCs could predict the prevalence and severity of symptomatic PAD, with ABI as the determinant of the state of EPC populations in disease-affected groups.
Resumo:
Background: Relationships between low-density lipoprotein cholesterol and endothelial function in hemodialysis patients have yet to be investigated. Furthermore, current reporting of endothelial function data using flow-mediated dilatation has recognised limitations. The aims of the study were to determine the relationship between low-density lipoproteins and endothelial function in hemodialysis patients and to investigate the validity of determining the area under the curve for data collected during the flow-mediated dilatation technique. Methods: Brachial artery responses to reactive hyperemia (endothelial-dependent) and glyceryl trinitrate (endothelial-independent) were assessed in 19 hemodialysis patients using high-resolution ultrasound. Lipid profiles and other factors known to effect brachial artery reactivity were also measured prior to the flow-mediated dilatation technique. Results: There were no significant relationships between serum low-density lipoproteins and endothelial-dependent or -independent vasodilation using absolute change (mm), relative change (%), time to peak change (s) or area under the curve (mm(.)s). In hemodialysis patients with atherosclerosis, area under the curve analysis showed a significantly (p < 0.05) decreased endothelial-dependent response (mean +/- S.D.: 19.2 +/- 17.4) compared to non-atherosclerotic patients (42.3 +/- 28.6). However, when analysing these data using absolute change, relative change or time to peak dilatation, there were no significant differences between the two groups. Conclusions: In summary, there was no relationship between low-density lipoproteins and endothelial function in hemodialysis patients. In addition, area under the curve analysis of flow-mediated vasodilatation data may be a useful method of determining the temporal vascular response during the procedure. (c) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background: Endothelial dysfunction plays an important role in the pathogenesis of coronary artery disease (CAD). Apart from traditional risk factors complement activation and inflammation may trigger and sustain endothelial dysfunction. We sought to assess the association between endothelial function, high sensitivity C-reactive protein (hs-CRP) and markers of complement activation in patients with either stable or unstable coronary artery disease. Methods: We prospectively recruited 78 patients, 35 patients with stable angina pectoris (SAP) and 43 patients with unstable angina pectoris (UAP). Endothelial function was assessed as brachial artery reactivity (BAR). Hs-CRP, C3a, C5a, and C1-Inhibitor (C1 inh.) were measured enzymatically. Results: Patients with IJAP showed higher median levels of hs-CRP and C3a compared to patients with SAP, while BAR was not significantly different between patient groups. In UAP patients, hs-CRP was significantly correlated with cholesterol (r = 0.27, p < 0.02), C3a (r = 0.32, p < 0.001) and C1 INH.(r = 0.41, p < 0.003), but not with flow mediated dilatation (r = 0.09, P = 0.41). Hs-CRP and C1 INH.were found to be independant predictors of IJAP in a backward stepwise logistic regression model. Conclusions: We conclude that both hs-CRP, a marker of inflammation and C3a, a marker of complement activation are elevated in patients with UAP, but not in patients with SAP. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Vascular dysfunction is one of the major causes of cardiovascular (CV) mortality and increases with age. Epidemiological studies suggest that Mediterranean diets and high nut consumption reduce CV disease risk and mortality while increasing plasma α-tocopherol. Therefore, we have investigated whether almond supplementation can improve oxidative stress markers and CV risk factors over 4 weeks in young and middle-aged men. Healthy middle-aged men (56 ± 5.8 years), healthy young men (22.1 ± 2.9 years) and young men with two or more CV risk factors (27.3 ± 5 years) consumed 50 g almond/day for 4 weeks. A control group maintained habitual diets over the same period. Plasma α-tocopherol/cholesterol ratios were not different between groups at baseline and were significantly elevated by almond intervention with 50 g almond/day for 4 weeks (p < 0.05). Plasma protein oxidation and nitrite levels were not different between groups whereas, total-, HDL- and LDL-cholesterols and triglycerides were significantly higher in healthy middle-aged and young men with CV risk factors but were not affected by intake. In the almond-consuming groups, flow-mediated dilatation (FMD) improved and systolic blood pressure reduced significantly after 50 g almonds/day for 4 weeks, but diastolic blood pressure reduced only in healthy men. In conclusion, a short-term almond-enriched diet can increase plasma α-tocopherol and improve vascular function in asymptomatic healthy men aged between 20 and 70 years without any effect on plasma lipids or markers of oxidative stress. © 2014 Informa UK, Ltd.
Resumo:
Chronic kidney disease (CKD) is associated with increased cardiovascular risk in comparison with the general population. This can be observed even in the early stages of CKD, and rises in proportion to the degree of renal impairment. Not only is cardiovascular disease (CVD) more prevalent in CKD, but its nature differs too, with an excess of morbidity and mortality associated with congestive cardiac failure, arrhythmia and sudden death, as well as the accelerated atherosclerosis which is also observed. Conventional cardiovascular risk factors such as hypertension, dyslipidaemia, obesity, glycaemia and smoking, are highly prevalent amongst patients with CKD, although in many of these examples the interaction between risk factor and disease differs from that which exists in normal renal function. Nevertheless, the extent of CVD cannot be fully explained by these conventional risk factors, and non-conventional factors specific to CKD are now recognised to contribute to the burden of CVD. Oxidative stress is a state characterised by excessive production of reactive oxygen species (ROS) and other radical species, a reduction in the capacity of antioxidant systems, and disturbance in normal redox homeostasis with depletion of protective vascular signalling molecules such as nitric oxide (NO). This results in oxidative damage to macromolecules such as lipids, proteins and DNA which can alter their functionality. Moreover, many enzymes are sensitive to redox regulation such that oxidative modification to cysteine thiol groups results in activation of signalling cascades which result in adverse cardiovascular effects such as vascular and endothelial dysfunction. Endothelial dysfunction and oxidative stress are present in association with many conventional cardiovascular risk factors, and can be observed even prior to the development of overt, clinical, vascular pathology, suggesting that these phenomena represent the earliest stages of CVD. In the presence of CKD, there is increased ROS production due to upregulated NADPH oxidase (NOX), increase in a circulating asymmetric dimethylarginine (ADMA), uncoupling of endothelial nitric oxide synthase (eNOS) as well as other mechanisms. There is also depletion in exogenous antioxidants such as ascorbic acid and tocopherol, and a reduction in activity of endogenous antioxidant systems regulated by the master gene regulator Nrf-2. In previous studies, circulating markers of oxidative stress have been shown to be increased in CKD, together with a reduction in endothelial function in a stepwise fashion relating to the severity of renal impairment. Not only is CVD linked to oxidative stress, but the progression of CKD itself is also in part dependent on redox sensitive mechanisms. For example, administration of the ROS scavenger tempol attenuates renal injury and reduces renal fibrosis seen on biopsy in a mouse model of CKD, whilst conversely, supplementation with the NOS inhibitor L-NAME causes proteinuria and renal impairment. Previous human studies examining the effect of antioxidant administration on vascular and renal function have been conflicting however. The work contained in this thesis therefore examines the effect of antioxidant administration on vascular and endothelial function in CKD. Firstly, 30 patients with CKD stages 3 – 5, and 20 matched hypertensive controls were recruited. Participants with CKD had lower ascorbic acid, higher TAP and ADMA, together with higher augmentation index and pulse wave velocity. There was no difference in baseline flow mediated dilatation (FMD) between groups. Intravenous ascorbic acid increased TAP and O2-, and reduced central BP and augmentation index in both groups, and lowered ADMA in the CKD group only. No effect on FMD was observed. The effects of ascorbic acid on kidney function was then investigated, however this was hindered by the inherent drawbacks of existing methods of non-invasively measuring kidney function. Arterial spin labelling MRI is an emerging imaging technique which allows measurement of renal perfusion without administration of an exogenous contrast agent. The technique relies upon application of an inversion pulse to blood within the vasculature proximal to the kidneys, which magnetically labels protons allowing measurement upon transit to the kidney. At the outset of this project local experience using ASL MRI was limited and there ensued a prolonged pre-clinical phase of testing with the aim of optimising imaging strategy. A study was then designed to investigate the repeatability of ASL MRI in a group of 12 healthy volunteers with normal renal function. The measured T1 longitudinal relaxation times and ASL MRI perfusion values were in keeping with those found in the literature; T1 time was 1376 ms in the cortex and 1491 ms in the whole kidney ROI, whilst perfusion was 321 mL/min/100g in the cortex, and 228 mL/min/100g in the whole kidney ROI. There was good reproducibility demonstrated on Bland Altman analysis, with a CVws was 9.2% for cortical perfusion and 7.1% for whole kidney perfusion. Subsequently, in a study of 17 patients with CKD and 24 healthy volunteers, the effects of ascorbic acid on renal perfusion was investigated. Although no change in renal perfusion was found following ascorbic acid, it was found that ASL MRI demonstrated significant differences between those with normal renal function and participants with CKD stages 3 – 5, with increased cortical and whole kidney T1, and reduced cortical and whole kidney perfusion. Interestingly, absolute perfusion showed a weak but significant correlation with progression of kidney disease over the preceding year. Ascorbic acid was therefore shown to have a significant effect on vascular biology both in CKD and in those with normal renal function, and to reduce ADMA only in patients with CKD. ASL MRI has shown promise as a non-invasive investigation of renal function and as a biomarker to identify individuals at high risk of progressive renal impairment.
Resumo:
El objetivo del presente estudio fue cuantificar la contribución del sobrepeso en la magnitud de la lipemia posprandial en sujetos normolipídicos. Se incluyeron 33 adultos normolipídicos en dos grupos (n=20, sobrepeso y (n=13 eutróficos, 66% hombres, edad media 31,2±7,6 años). Se midió la vasodilatación mediada por flujo (VMF), la velocidad de onda de pulso (VOP), el perfil lipídico, el cociente Log TG/c-HDL, la glucosa y presión arterial tras una ingesta estándar con alto contenido de grasa (79% Kcal/grasa). Se calculó, el Z-score de riesgo cardiovascular a partir de la suma de los residuos tipificados (Z) de las variables de riesgo cardiovascular. El estado de lipemia posprandial se midió en ayuno (0 min) y a los (60, 120, 180, y 240 min) posprandiales. El valor basal de la VMF y la VOP fue de 6,9±5,9% y 7.0±0.8 m/s, respectivamente. Se identificó que la lipemia posprandial reducía la WMF en 19,2% a los 60 min (5,9±1,5%) y a los 240 min (3,7±1,2%) (p<0,04), respectivamente. Este hallazgo se acompañó con un aumento en la VOP (p<0,05). Al dividir los sujetos en dos grupos según el IMC, los participantes en sobrepeso muestran cifras más elevadas en el Z-score de riesgo cardiovascular, la VOP, el Log TG/c-HDL y el Δ-VOP, (p<0,001). En conclusión los sujetos clasificados en sobrepeso muestran un perfil cardiometabolico asociado con un mayor riesgo cardiovascular.
Resumo:
Flow induced shear stress plays an important role in regulating cell growth and distribution in scaffolds. This study sought to correlate wall shear stress and chondrocytes activity for engineering design of micro-porous osteochondral grafts based on the hypothesis that it is possible to capture and discriminate between the transmitted force and cell response at the inner irregularities. Unlike common tissue engineering therapies with perfusion bioreactors in which flow-mediated stress is the controlling parameter, this work assigned the associated stress as a function of porosity to influence in vitro proliferation of chondrocytes. D-optimality criterion was used to accommodate three pore characteristics for appraisal in a mixed level fractional design of experiment (DOE); namely, pore size (4 levels), distribution pattern (2 levels) and density (3 levels). Micro-porous scaffolds (n=12) were fabricated according to the DOE using rapid prototyping of an acrylic-based bio-photopolymer. Computational fluid dynamics (CFD) models were created correspondingly and used on an idealized boundary condition with a Newtonian fluid domain to simulate the dynamic microenvironment inside the pores. In vitro condition was reproduced for the 3D printed constructs seeded by high pellet densities of human chondrocytes and cultured for 72 hours. The results showed that cell proliferation was significantly different in the constructs (p<0.05). Inlet fluid velocity of 3×10-2mms-1 and average shear stress of 5.65×10-2 Pa corresponded with increased cell proliferation for scaffolds with smaller pores in hexagonal pattern and lower densities. Although the analytical solution of a Poiseuille flow inside the pores was found insufficient for the description of the flow profile probably due to the outside flow induced turbulence, it showed that the shear stress would increase with cell growth and decrease with pore size. This correlation demonstrated the basis for determining the relation between the induced stress and chondrocyte activity to optimize microfabrication of engineered cartilaginous constructs.
Resumo:
In our previous work, bone cell networks with controlled spacing and functional intercellular gap junctions had been successfully established by using microcontact printing and self assembled monolayers technologies [Guo, X. E., E. Takai, X. Jiang, Q. Xu, G. M. Whitesides, J. T. Yardley, C. T. Hung, E. M. Chow, T. Hantschel, and K. D. Costa. Mol. Cell. Biomech. 3:95-107, 2006]. The present study investigated the calcium response and the underlying signaling pathways in patterned bone cell networks exposed to a steady fluid flow. The glass slides with cell networks were separated into eight groups for treatment with specific pharmacological agents that inhibit pathways significant in bone cell calcium signaling. The calcium transients of the network were recorded and quantitatively evaluated with a set of network parameters. The results showed that 18 alpha-GA (gap junction blocker), suramin (ATP inhibitor), and thapsigargin (depleting intracellular calcium stores) significantly reduced the occurrence of multiple calcium peaks, which were visually obvious in the untreated group. The number of responsive peaks also decreased slightly yet significantly when either the COX-2/PGE(2) or the NOS/nitric oxide pathway was disrupted. Different from all other groups, cells treated with 18 alpha-GA maintained a high concentration of intracellular calcium following the first peak. In the absence of calcium in the culture medium, the intracellular calcium concentration decreased slowly with fluid flow without any calcium transients observed. These findings have identified important factors in the flow mediated calcium signaling of bone cells within a patterned network.
Resumo:
Dans les neurones et les cellules vasculaires cérébrales, les dérivés réactifs de l’oxygène jouent un double rôle puisqu’ils peuvent avoir à la fois des effets bénéfiques, à faibles concentrations, et des effets délétères, à des concentrations élevées. Chez la souris, la circulation cérébrale se distingue des autres lits vasculaires puisque le peroxyde d’hydrogène (H2O2) est le principal médiateur endothélial relaxant endogène. L’objectif de notre première étude a été de caractériser l’implication physiologique du H2O2 dérivé de la eNOS dans la fonction endothéliale cérébrale de la souris. Nous avons voulu identifier les mécanismes impliqués dans la dilatation induite par l’augmentation de débit intra-luminal (flow-mediated dilation, FMD). La FMD est la réponse à un stimulus physiologique endothélial la plus représentative de la situation in vivo. Nous avons démontré que le H2O2, et non le monoxyde d’azote (NO), dérivant de l’activation de la eNOS cérébrale, est le principal médiateur de la FMD. Cependant, nous connaissons très peu de données sur l’évolution de la voie du H2O2 au cours du vieillissement qu’il soit associé ou non aux facteurs de risque pour les maladies cardiovasculaires. Au cours du vieillissement, au niveau périphérique, les facteurs endothéliaux constricteurs ou dilatateurs évoluent en fonction de l’augmentation de stress oxydant. La présence de facteurs de risque pour les maladies cardiovasculaires, telle que l’hypercholestérolémie, pourrait accentuer l’augmentation du stress oxydant et ainsi accélérer la dysfonction endothéliale. Au niveau cérébral, très peu de données sont disponibles. Dans le cadre de notre deuxième étude, nous avons émis l’hypothèse qu’un débalancement des facteurs endothéliaux pourrait être à l’origine (1) de la dysfonction endothéliale cérébrale observée au cours du vieillissement et (2) de la dysfonction endothéliale précoce qui apparaît en présence d’athérosclérose. Nos résultats ont montré que l’augmentation de stress oxydant associée au vieillissement conduit à une libération endogène accrue de TXA2 qui diminue la voie du H2O2 au niveau cérébral et, par conséquent, réduit la dilatation dépendante de l’endothélium. De plus, la présence d’athérosclérose accélère l’apparition de la dysfonction endothéliale cérébrale. Le rôle clé joué par le stress oxydant a été confirmé par un traitement préventif avec l’antioxydant catéchine qui a permis de renverser tous les effets délétères de l’athérosclérose sur les fonctions endothéliales cérébrales. Finalement, la dysfonction endothéliale cérébrale précoce, associée avec l’athérosclérose, pourrait non seulement augmenter l’incidence de développer des accidents vasculaires cérébraux (AVC) mais aussi induire une diminution du débit sanguin cérébral et, ultimement, affecter les fonctions neuronales. Dans le cadre de notre troisième étude, nous avons émis l’hypothèse que l’augmentation de stress oxydant est associée avec une diminution du débit sanguin cérébral et un déclin subséquent des fonctions cognitives. Nous avons utilisé des souris athérosclérotiques âgées de 3 mois que nous avons soumises, ou pas, à un traitement chronique à la catéchine. Nos travaux montrent qu’un traitement préventif avec la catéchine peut prévenir les effets néfastes de l’athérosclérose sur la FMD, le débit sanguin et le déclin des fonctions cognitives qui est normalement associé au vieillissement. Nos résultats ont permis de distinguer l’effet du vieillissement des effets de l’athérosclérose sur les fonctions vasculaires cérébrales. Le traitement préventif avec la catéchine a eu des effets bénéfiques marqués sur la fonction endothéliale cérébrale, le débit sanguin cérébral et les fonctions cognitives, démontrant le rôle clé de l’environnement redox dans la régulation des fonctions cérébrales.
Resumo:
In vivo, la pression artérielle au niveau des artères cérébrales est pulsée, alors que ex vivo, l’étude de la fonction cérébrovasculaire est majoritairement mesurée en pression statique. L’impact de la pression pulsée sur la régulation du tonus myogénique et sur la fonction endothéliale cérébrale est inconnu. Nous avons posé l’hypothèse selon laquelle en présence d'une pression pulsée physiologique, la dilatation dépendante de l’endothélium induite par le flux et le tonus myogénique seraient optimisés. L’objectif de notre étude est d’étudier ex vivo l’impact de la pression pulsée sur le tonus myogénique et la dilatation induite par le flux dans les artères cérébrales de souris. Nous avons utilisé un artériographe pressurisé couplé à un système générant une onde pulsée de fréquence et d’amplitude réglables. Les artères cérébrales moyennes (≈160 μm de diamètre) ont été isolées de souris C57BL6 âgées de 3 mois et pressurisées à 60 mm Hg, en pression statique ou en pression pulsée. En pression statique, le tonus myogénique est faible mais est potentialisé par le L-NNA (un inhibiteur de la eNOS) et la PEG-catalase (qui dégrade le H2O2), suggérant une influence des produits dilatateurs dérivés de la eNOS sur le tonus myogénique. En présence de pression pulsée (pulse de 30 mm Hg, pression moyenne de 60 mm Hg, 550 bpm), le tonus myogénique est significativement augmenté, indépendamment du L-NNA et de la PEG-catalase, suggérant que la pression pulsée lève l’impact de la eNOS. En pression statique ou pulsée, les artères pré-contractées se dilatent de façon similaire jusqu’à une force de cisaillement de 15 dyn/cm2. Cette dilatation, dépendante de l’endothélium et de la eNOS, est augmentée en condition pulsée à une force de cisaillement de 20 dyn/cm2. En présence de PEG-catalase, la dilatation induite par le flux est diminuée en pression statique mais pas en pression pulsée, suggérant que la pression statique, mais pas la pression pulsée, favorise la production de O2 -/H2O2. En effet, la dilatation induite par le flux est associée à une production de O2 -/H2O2 par la eNOS, mesurable en pression statique, alors que la dilatation induite par le flux en pression pulsée est associée à la production de NO. Les différences de sensibilité à la dilatation induite par le flux ont été abolies après inhibition de Nox2, en condition statique ou pulsée. La pression pulsée physiologique régule donc l’activité de la eNOS cérébrale, en augmentant le tonus myogénique et, en présence de flux, permet la relâche de NO via la eNOS.
Resumo:
Objective To evaluate whether the presence of polycystic ovary syndrome (PCOS) alters multiple ultrasonographic and laboratory markers of metabolic and cardiovascular disease risk in obese women without any other health condition that could interfere with combined oral contraceptive (COC) eligibility criteria. Methods This was a case- control study evaluating 90 obese women ( body mass index ( BMI) = 30.0 kg/m2 and < 40 kg/m2) aged between 18 and 40 years without any other health condition that could interfere with COC eligibility criteria, of whom 45 had PCOS and 45 were age- matched controls. BMI, waist and hip circumference, arterial blood pressure, fasting insulin and glucose, quantitative insulin sensitivity check index ( QUICKI), highdensity lipoprotein cholesterol, low- density lipoprotein cholesterol, total cholesterol, triglycerides, testosterone, sex hormone- binding globulin, free androgen index ( FAI), carotid stiffness index, intima media thickness, flowmediated dilatation ( FMD) of the brachial artery and non- alcoholic fatty liver disease ( NAFLD) were assessed. Results In women with PCOS, we observed a higher frequency of NAFLD ( 73.3 vs. 46.7%, P < 0.01) and higher FAI ( 10.4 vs. 6.8%, P < 0.01). We also observed a trend towards increased insulin levels ( 10.06 +/- 6.66 vs. 7.45 +/- 5.88 mu IU/mL, P = 0.05), decreased QUICKI ( 0.36 +/- 0.06 vs. 0.39 +/- 0.07, P = 0.05) and decreased FMD ( 7.00 +/- 3.87 vs. 8.41 +/- 3.79%, P = 0.08). No other significant difference was observed. Conclusions NAFLD is frequent in obese women without any other health condition that could interfere with COC eligibility criteria, especially in those with PCOS. This should be considered when choosing the best contraceptive option. Copyright (C) 2012 ISUOG. Published by John Wiley & Sons, Ltd.
Resumo:
Although it is known that obesity, diabetes, and Kawasaki's disease play important roles in systemic inflammation and in the development of both endothelial dysfunction and cardiomyopathy, there is a lack of data regarding the endothelial function of pre-pubertal children suffering from cardiomyopathy. In this study, we performed a systematic review of the literature on pre-pubertal children at risk of developing cardiomyopathy to assess the endothelial function of pre-pubertal children at risk of developing cardiomyopathy. We searched the published literature indexed in PubMed, Bireme and SciELO using the keywords 'endothelial', 'children', 'pediatric' and 'infant' and then compiled a systematic review. The end points were age, the pubertal stage, sex differences, the method used for the endothelial evaluation and the endothelial values themselves. No studies on children with cardiomyopathy were found. Only 11 papers were selected for our complete analysis, where these included reports on the flow-mediated percentage dilatation, the values of which were 9.80±1.80, 5.90±1.29, 4.50±0.70, and 7.10±1.27 for healthy, obese, diabetic and pre-pubertal children with Kawasaki's disease, respectively. There was no significant difference in the dilatation, independent of the endothelium, either among the groups or between the genders for both of the measurements in children; similar results have been found in adolescents and adults. The endothelial function in cardiomyopathic children remains unclear because of the lack of data; nevertheless, the known dysfunctions in children with obesity, type 1 diabetes and Kawasaki's disease may influence the severity of the cardiovascular symptoms, the prognosis, and the mortality rate. The results of this study encourage future research into the consequences of endothelial dysfunction in pre-pubertal children.
Resumo:
OBJECTIVES: The objective of this study was to examine determinants of excess coronary artery disease risk in UK South Asians, more prevalent in this population than UK Caucasians, by examining differences in risk factors, vascular function, and endothelial progenitor cells (EPCs). METHODS AND RESULTS: 24 South Asian and 25 Caucasian healthy age-matched nonsmoking men were studied. Vascular function was assessed by flow-mediated and GTN brachial artery dilatation and blood flow responses to infusion of ACh, SNP, and L-NMMA. EPC number and function were measured by flow cytometry (CD34, CD133, and KDR positive cells), and CFU/migration assays. Traditional risk factors and anthropometric measurements were similar in the groups. South Asians had higher fasting insulin levels (6.01 versus 3.62 microU/mL; P = 0.02). South Asians had lower FMD (6.9 versus 8.5%; P = 0.003), L-NMMA response (0.8 versus 1.3 mL/min/100 mL; P = 0.03), mean SNP response (9.5+/-0.6 versus 11.6+/-0.6; P = 0.02), EPC number (0.046+/-0.005% versus 0.085+/-0.009%; P = < 0.001), and CFU ability (CFU 4.29+/-1.57 versus 18.86+/-4.00; P = 0.005). EPC number was the strongest predictor of FMD. Ethnicity was the strongest predictor of EPC number. CONCLUSIONS: Healthy South Asian men are more insulin resistant, and demonstrate endothelial dysfunction and reduced EPC number and function compared with Caucasians. These abnormalities may contribute to their increased CAD risk.
Resumo:
Extreme lipid values predisposing on illnesses are dyslipidemias. Dyslipidemias evolve in early childhood, but their significance or persistency is not well known. Common dyslipidemias may aggregate in the same families. This thesis is a part of the longitudinal randomized Special Turku coronary Risk factor Intervention Project STRIP, in which 1054 families with six months old children were randomized to a control or to an intervention group. The family lipid data from the first 11 years was used. Fasting samples at the age of five years defined the lipid phenotypes. The dyslipidemias coexisting in the parent and the child were studied. At the age of 11 years 402 children participated artery ultrasound studies. The significance of the childhood dyslipidemias and lipoprotein(a) concentration on endothelial function was evaluated with the flow mediated arterial dilatation test. Frequently elevated non-HDL cholesterol concentration from one to seven-year-old children associated to similar parental dyslipidemia that improved the predictive value of the childhood sample. The familial combinations were hypercholesterolemia (2.3%), hypertriglyceridemia (2.0%), familial combined hyperlipidemia (1.8%), and isolated low HDL-cholesterol concentration (1.4%). Combined hyperlipidemia in a parent predicted most frequently the child’s hyperlipidemia. High lipoprotein(a) concentration aggregated in some families and associated to childhood attenuated brachial artery dilatation. Hypercholesterolemia and high lipoprotein(a) concentration at five years of age predicted attenuated dilatation. This study demonstrated that parental dyslipidemias and high lipoprotein(a) concentration help to find early childhood dyslipidemias. The association of hypercholesterolemia and lipoprotein(a) concentration with endothelial function emphasizes the importance of the early recognition of the dyslipidemias.
Resumo:
Background & aims: - Excess adiposity (overweight) is one of numerous risk factors for cardiometabolic disease. Most risk reduction strategies for overweight rely on weight loss through dietary energy restriction. However, since the evidence base for long-term successful weight loss interventions is scant, it is important to identify strategies for risk reduction independent of weight loss. The aim of this study was to compare the effects of isoenergetic substitution of dietary saturated fat (SFA) with monounsaturated fat (MUFA) via macadamia nuts on coronary risk compared to usual diet in overweight adults. Methods: - A randomised controlled trial design, maintaining usual energy intake, but manipulating dietary lipid profile in a group of 64 (54 female, 10 male) overweight (BMI > 25), otherwise healthy, subjects. For the intervention group, energy intakes of usual (baseline) diets were calculated from multiple 3 day diet diaries, and SFA was replaced with MUFA (target: 50%E from fat as MUFA) by altering dietary SFA sources and adding macadamia nuts to the diet. Both control and intervention groups received advice on national guidelines for physical activity and adhered to the same protocol for diet diary record keeping and trial consultations. Anthropometric and clinical measures were taken at baseline and at 10 weeks. Results: A significant increase in brachial artery flow-mediated dilation (p < 0.05) was seen in the monounsaturated diet group at week 10 compared to baseline. This corresponded to significant decreases in waist circumference, total cholesterol (p < 0.05), plasma leptin and ICAM-1 (p < 0.01). Conclusions: - In patient subgroups where adherence to dietary energy-reduction is poor, isoenergetic interventions may improve endothelial function and other coronary risk factors without changes in body weight. This trial was registered with the Australia New Zealand Clinical Trial Registry (ACTRN12607000106437).