999 resultados para FOS PROTEIN
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Biológicas (Biologia Celular e Molecular) - IBRC
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A wealth of evidence indicates that the dorsal raphe nucleus (DR) is not a homogenous structure, but an aggregate of distinctive populations of neurons that may differ anatomically, neurochemically and functionally. Other findings suggest that serotonergic neurons within the mid-caudal and caudal part of the DR are involved in anxiety processing while those within the lateral wings (IwDR) and ventrolateral periaqueductal gray (vIPAG) are responsive to panic-evoking stimuli/situations. However, no study to date has directly compared the activity of 5-HT and non-5HT neurons within different subnuclei of the DR following the expression of anxiety- and panic-related defensive responses. In the present investigation, the number of doubly immunostained cells for Fos protein and tryptophan hydroxylase, a marker of serotonergic neurons, was assessed within the rat DR, median raphe nucleus (MRN) and PAG following inhibitory avoidance and escape performance in the elevated T-maze, behaviors associated with anxiety and panic, respectively. Inhibitory avoidance, but not escape, significantly increased the number of Fos-expressing serotonergic neurons within the mid-caudal part of the dorsal subnucleus, caudal and interfascicular subnuclei of the DR and in the MRN. Escape, on the other hand, caused a marked increase in the activity of non-5HT cells within the IwDR, vIPAG, dorsolateral and dorsomedial columns of the PAG. These results strongly corroborate the view that different subsets of neurons in the DR are activated by anxiety- and panic-relevant stimuli/situations, with important implications for the understanding of the pathophysiology of generalized anxiety and panic disorders. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Staphylococcus aureus alpha-hemolysin was the first bacterial toxin recognized to form pores in the plasma membrane of eukaryotic cells. It is secreted as a water-soluble monomer that upon contact with target membranes forms an amphiphatic heptameric beta-barrel which perforates the bilayer. As a consequence, red cells undergo colloidosmotic lyses, while some nucleated cells may succumb to necrosis or programmed cell death. However, most cells are capable of repairing a limited number of membrane lesions, and then respond with productive transcriptional activation of NF-kB. In the present study, by using microarray and semiquantitative reverse transcriptase polymerase chain reaction (RT-PCR), data from a previously performed serial analysis of gene expression (SAGE) were extended and verified, revealing that immediate early genes (IEGs) such as c-fos, c-jun and egr-1 are strongly induced at 2-8 h after transient toxin treatment. Activating protein 1 (AP-1: c-Fos, c-Jun) binding activity was increased accordingly. As IEGs are activated by growth factors, these findings led to the discovery that -toxin promotes cell cycle progression of perforated cells in an EGFR-dependent fashion. Although the amount of c-fos mRNA rose rapidly after toxin treatment, c-Fos protein expression was observed only after a lag of about 3 h. Since translation consumes much ATP, which transiently drops after transient membrane perforation, the suspicion arised that membrane-perforation caused global, but temporary downregulation of translation. In fact, eIF2α became heavily phosphorylated minutes after cells had been confronted with the toxin, resulting in shutdown of protein synthesis before cellular ATP levels reached the nadir. GCN2 emerged as a candidate eIF2α kinase, since its expression rapidly increased in toxin-treated cells. Two hours after toxin treatment, GADD34 transcripts, encoding a protein that targets the catalytic subunit of protein phosphatase 1 (PP1) to the endoplasmic reticulum, were overexpressed. This was followed by dephosphorylation of eIF2α and resumption of protein synthesis. Addition of tautomycetin, a specific inhibitor of PP1, led to marked hyperphosphorylation of eIF2α and significantly reduced the drop of ATP-levels in toxin-treated cells. A novel link between two major stress-induced signalling pathways emerged when it was found that both translational arrest and restart were under the control of stress-activated protein kinase (SAPK) p38. The data provide an explanation for the indispensible role of p38 for defence against the archetypal threat of membrane perforation by agents that produce small transmembrane-pores.
Resumo:
The conditioning of cocaine's subjective actions with environmental stimuli may be a critical factor in long-lasting relapse risk associated with cocaine addiction. To study the significance of learning factors in persistent addictive behavior as well as the neurobiological basis of this phenomenon, rats were trained to associate discriminative stimuli (SD) with the availability of i.v. cocaine vs. nonrewarding saline solution, and then placed on extinction conditions during which the i.v. solutions and SDs were withheld. The effects of reexposure to the SD on the recovery of responding at the previously cocaine-paired lever and on Fos protein expression then were determined in two groups. One group was tested immediately after extinction, whereas rats in the second group were confined to their home cages for an additional 4 months before testing. In both groups, the cocaine SD, but not the non-reward SD, elicited strong recovery of responding and increased Fos immunoreactivity in the basolateral amygdala and medial prefrontal cortex (areas Cg1/Cg3). The response reinstatement and Fos expression induced by the cocaine SD were both reversed by selective dopamine D1 receptor antagonists. The undiminished efficacy of the cocaine SD to elicit drug-seeking behavior after 4 months of abstinence parallels the long-lasting nature of conditioned cue reactivity and cue-induced cocaine craving in humans, and confirms a significant role of learning factors in the long-lasting addictive potential of cocaine. Moreover, the results implicate D1-dependent neural mechanisms within the medial prefrontal cortex and basolateral amygdala as substrates for cocaine-seeking behavior elicited by cocaine-predictive environmental stimuli.
Resumo:
Intermittent electrical footshock induces c-fos expression in parvocellular neurosecretory neurons expressing corticotropin-releasing factor and in other visceromotor cell types of the paraventricular hypothalamic nucleus (PVH). Since catecholaminergic neurons of the nucleus of the solitary tract and ventrolateral medulla make up the dominant loci of footshock-responsive cells that project to the PVH, these were evaluated as candidate afferent mediators of hypothalamic neuroendocrine responses. Rats bearing discrete unilateral transections of this projection system were exposed to a single 30-min footshock session and sacrificed 2 hr later. Despite depletion of the aminergic innervation on the ipsilateral side, shock-induced up-regulation of Fos protein and corticotropin-releasing factor mRNA were comparable in strength and distribution in the PVH on both sides of the brain. This lesion did, however, result in a substantial reduction of Fos expression in medullary aminergic neurons on the ipsilateral side. These results contrast diametrically with those obtained in a systemic cytokine (interleukin 1) challenge paradigm, where similar cuts ablated the Fos response in the ipsilateral PVH but left intact the induction seen in the ipsilateral medulla. We conclude that (i) footshock-induced activation of medullary aminergic neurons is a secondary consequence of stress, mediated via a descending projection transected by our ablation, (ii) stress-induced activation of medullary aminergic neurons is not necessarily predictive of an involvement of these cell groups in driving hypothalamic visceromotor responses to a given stressor, and (iii) despite striking similarities in the complement of hypothalamic effector neurons and their afferents that may be activated by stresses of different types, distinct mechanisms may underlie adaptive hypothalamic responses in each.
Resumo:
By most accounts the psychological stressor restraint produces a distinct pattern of neuronal activation in the brain. However, some evidence is incongruous with this pattern, leading us to propose that the restraint- induced pattern in the central nervous system might depend on the duration of restraint used. We therefore determined the pattern of neuronal activation ( as indicated by the presence of Fos protein) seen in the paraventricular nucleus (PVN), bed nucleus of the stria terminalis, amygdala, locus coeruleus, nucleus tractus solitarius (NTS), ventrolateral medulla (VLM) and thoracic spinal cord of the rat in response to 0, 15, 30 or 60 min periods of restraint. We found that although a number of cell groups displayed a linear increase in activity with increasing durations of restraint ( e. g. hypothalamic corticotrophin-releasing factor (CRF) cells, medial amygdala neurons and sympathetic preganglionic neurons of the thoracic spinal cord), a number of cell groups did not. For example, in the central amygdala restraint produced both a decrease in CRF cell activity and an increase in non-CRF cell activity. In the locus coeruleus, noradrenergic neurons did not display Fos in response to 15 min of restraint, but were significantly activated by 30 or 60 min restraint. After 30 or 60 min restraint a greater degree of activation of more rostral A1 noradrenergic neurons was observed compared with the pattern of A1 noradrenergic neurons in response to 15 min restraint. The results of this study demonstrate that restraint stress duration determines the amount and the pattern of neuronal activation seen in response to this psychological stressor.
Resumo:
Gene expression is frequently regulated by multiple transcription factors (TFs). Thermostatistical methods allow for a quantitative description of interactions between TFs, RNA polymerase and DNA, and their impact on the transcription rates. We illustrate three different scales of the thermostatistical approach: the microscale of TF molecules, the mesoscale of promoter energy levels and the macroscale of transcriptionally active and inactive cells in a cell population. We demonstrate versatility of combinatorial transcriptional activation by exemplifying logic functions, such as AND and OR gates. We discuss a metric for cell-to-cell transcriptional activation variability known as Fermi entropy. Suitability of thermostatistical modeling is illustrated by describing the experimental data on transcriptional induction of NF?B and the c-Fos protein.
Resumo:
Fas, a death domain-containing member of the tumor necrosis factor receptor family and its ligand FasL have been predominantly studied with respect to their capability to induce cell death. However, a few studies indicate a proliferation-inducing signaling activity of these molecules too. We describe here a novel signaling pathway of FasL and the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) that triggers transcriptional activation of the proto-oncogene c-fos, a typical target gene of mitogenic pathways. FasL- and TRAIL-mediated up-regulation of c-Fos was completely dependent on the presence of Fas-associated death domain protein (FADD) and caspase-8, but caspase activity seemed to be dispensable as a pan inhibitor of caspases had no inhibitory effect. Upon overexpression of the long splice form of cellular FADD-like interleukin-1-converting enzyme (FLICE) inhibitory protein (cFLIP) in Jurkat cells, FasL- and TRAIL-induced up-regulation of c-Fos was almost completely blocked. The short splice form of FLIP, however, showed a rather stimulatory effect on c-Fos induction. Together these data demonstrate the existence of a death receptor-induced, FADD- and caspase-8-dependent pathway leading to c-Fos induction that is inhibited by the long splice form FLIP-L.
Resumo:
Human peripheral blood monocytes (HPBM) were isolated by centrifugal elutriation from mononuclear cell enriched fractions after routine plateletapheresis and the relationship between maturation of HPBM to macrophage-like cells and activation for tumoricidal activity determined. HPBM were cultured for various times in RPMI 1640 supplemented with 5% pooled human AB serum and cytotoxicity to $\sp{125}$IUDR labeled A375M, a human melanoma cell line, and TNF-$\alpha$ release determined by cytolysis of actinomycin D treated L929 cells. Freshly isolated HPBM or those exposed to recombinant IFN-$\gamma$(1.0 U/ml) were not cytolytic and did not release TNF-$\alpha$ into culture supernatants. Exposure to bacterial lipopolysaccharide (LPS, 1.0 $\upsilon$g/ml) stimulated cytolytic activity and release of TNF-$\alpha$. Maximal release of TNF-$\alpha$ protein occurred at 8 hrs and returned to baseline by 72 hrs. Expression of TNF-$\alpha$ protein was determined by Western blotting. Neither freshly isolated nor IFN-$\gamma$ treated HPBM expressed TNF protein at any time during in vitro culture. LPS treated HPBM maximally expressed the 17KD TNF-$\alpha$ protein at 8 hrs, and protein was not detected after 36 hrs of in vitro culture. Expression of TNF-$\alpha$ mRNA was determined by Northern blotting. Freshly isolated HPBM express TNF-$\alpha$ mRNA which decays to basal levels by 6 hrs of in vitro culture. IFN-$\gamma$ treatment maintains TNF-$\alpha$ mRNA expression for up to 48 hrs of culture, after which it is undetectable. LPS induces TNF-$\alpha$ mRNA after 30 minutes of exposure with maximal accumulation occurring between 4 to 8 hrs. TNF mRNA was not detected in control HPBM at any time after 6 hrs or IFN-$\gamma$ treated HPBM after 48 hrs of in vitro culture. A pulse of LPS the last 24 hrs of in vitro culture induces the accumulation of TNF-$\alpha$ mRNA in HPBM cultured for 3, 5, and 7 days, with the magnitude of induction decreasing approximately 10 fold between 3 and 7 days. Induction of TNF-$\alpha$ mRNA occurred in the absence of detectable TNF-$\alpha$ protein or supernatant activity. Maturation of HPBM to macrophage-like cells controls competence for activation, magnitude and duration of the activation response. ^