949 resultados para Doubled haploid lines
Resumo:
The root-lesion nematode Pratylenchus thornei causes substantial loss to bread wheat production in the northern grain region of Australia and other parts of the world. West Asia and North Africa (WANA) wheat accessions with partial resistance to P. thornei were analysed for mode of inheritance in a half-diallel crossing design of F1 hybrids (10 parents) and F2 populations (7 parents). General combining ability was more important than specific combining ability as indicated by components of variance ratios of 0.93 and 0.95 in diallel ANOVA of the F1 and F2 generations, respectively. General combining ability values of the 'resistant' parents were predictive of the mean nematode numbers of their progeny in crosses with the susceptible Australian cv. Janz at the F1 (R populations showed relatively continuous distributions. Heritability was 0.68 for F2 populations in the half-diallel of resistant parents and 0.82-0.92 for 5 'resistant' parent/Janz doubled-haploid populations (narrow-sense heritability on a line mean basis). The results indicate polygenic inheritance of P. thornei resistance with a minimum of from 2 to 6 genes involved in individual F populations of 5 resistant parents crossed with Janz. Morocco 426 and Iraq 43 appear to be the best of the parents tested for breeding for resistance to P. thornei. None of the P. thornei-resistant WANA accessions was resistant to Pratylenchus neglectus.
Resumo:
This is a sub-project of the Australian Wheat and Barley Molecular Marker Program funded by GRDC and led by Drs Diane Mather and Ken Chalmers of University of Adelaide. In this sub-project we will supply phenotypic data on resistance to two species of root-lesion nematodes (Pratylenchus thornei and P. neglectus) on several populations of wheat doubled haploids. We will also supply existing genotypic data on one doubled haploid population. We will also test one population of doubled haploids (CPI133872/Janz) a second time for resistance to P. thornei and P. neglectus and supply this information to University of Adelaide for the development of molecular markers for use by wheat breeders in selecting for resistance to root-lesion nematodes.
Resumo:
Root architecture traits in wheat are important in deep soil moisture acquisition and may be used to improve adaptation to water-limited environments. The genetic architecture of two root traits, seminal root angle and seminal root number, were investigated using a doubled haploid population derived from SeriM82 and Hartog. Multiple novel quantitative trait loci (QTL) were identified, each one having a modest effect. For seminal root angle, four QTL (-log10(P) >3) were identified on 2A, 3D, 6A and 6B, and two suggestive QTL (-log10(P) >2) on 5D and 6B. For root number, two QTL were identified on 4A and 6A with four suggestive QTL on 1B, 3A, 3B and 4A. QTL for root angle and root number did not co-locate. Transgressive segregation was found for both traits. Known major height and phenology loci appear to have little effect on root angle and number. Presence or absence of the T1BL.1RS translocation did not significantly influence root angle. Broad sense heritability (h 2) was estimated as 50 % for root angle and 31 % for root number. Root angle QTL were found to be segregating between wheat cultivars adapted to the target production region indicating potential to select for root angle in breeding programs. © 2013 Springer-Verlag Berlin Heidelberg.
Resumo:
Genomic regions influencing resistance to powdery mildew [Blumeria graminis (DC.) E.O. Speer f. sp. hordei Em. Marchal] were detected in a doubled haploid (DH) barley (Hordeum vulgare L.) population derived from a cross between the breeding line ND24260 and cultivar Flagship when evaluated across four field environments in Australia and Uruguay. Significant quantitative trait loci (OIL) for resistance to B. graminis were detected on six of the seven chromosomes (1H, 2H, 3H, 4H, 5H, and 7H). A QTL with large effect donated by ND24260 mapped to the short arm of chromosome 1H (1 HS) conferring near immunity to B. graminis in Australia but was ineffective in Uruguay. Three OIL donated by Flagship contributed partial resistance to B. graminis and were detected in at least two environments. These OIL were mapped to chromosomes 3H, 4H, and 5H (5HS) accounting for up to 18.6, 3.4, and 8.8% phenotypic variation, respectively. The 5HS QTL contributed partial resistance to B. graminis in all field environments in both Australia and Uruguay and aligned with the genomic region of Rph20, a gene conferring adult plant resistance (APR) to leaf rust (Puccinia hordei Otth), which is found in some cultivars having Vada' or 'Emir' in their parentage. Selection for favorable marker haplotypes within the 3H, 4H, and 5H QTL regions can be performed even in the presence of single (major) gene resistance. Pyramiding such QTL may provide an effective and potentially durable form of resistance to B. graminis.
Resumo:
植物远缘杂交是作物育种实践及其相关的基础遗传中应用最广泛的技术之一,几乎涉及到所有与栽培作物有关的科属内相对近缘的植物种类。除核型稳定的种间杂交可得到杂种外,还可以利用核型不稳定的种间杂交过程中父本染色体全部被消除的现象,通过胚培养和加倍处理获得大量的双单倍体(DH)杂交后代。然而,这种从小麦与玉米杂交获得的小麦DH后代与其理论上应完全同质的遗传表现却不相符,总有2-5%的DH植株发生了形态学变异,虽然没有明显的来自玉米的性状特征,而且一些研究者也认为它们是配子无性系变异,但是,不论是理论上还是一些间接的细胞学和生化证据都表明,有玉米的染色体DNA通过受精过程转移到小麦DH后代的基因组中,然而到目前为止,仍缺乏DNA水平上的直接证据。 本文在对来自小麦 * 玉米的谱通小麦DH系进行生化分析取得初步证据的基础上,构建玉米的随机基因组文库,从中筛选玉米的重复DNA序列作探针分别对普通小麦和波斯小麦的DH群体进行了系统的RFLP分析,并用有关的玉米重复列克隆对一些禾本科种和不同的玉米生物型基因组进行了比较研究,主要结果如下: 1、八种同工酶电泳分析表明,MDH、ADH、GDH、SKDH4种脱氢酶和GOT在后代中没有检测到任何变异,但21株普通小麦的DH后代群体中有7株在PER同工酶的慢区出现了增加一条酶带的变异,这条带在亲本小麦和玉米中均没有,它们与通常报道的无性系变异十分类似。其中有一株(第4号株)在迁移率为0.22的位置上出现了一条小麦所不具有的酶活性较强的EST带,在玉米同迁移率的位置上也有一条带,但活性十分微弱。此外,大部分小麦DH后代的AMY同工酶恬性有十分明显的增强。 2、可溶性蛋白质的SDS-PAGE分析,在小麦的DH后代中,有几株的变异很明显,其中第4、7、19号株(图2)在分子量为43000道尔顿的位置上出现了和玉米同迁移率而小麦不具有的蛋白质带,这强烈地暗示了玉米DNA的确通过受精作用导入小麦。 3、构建了玉米的随机基因组文库,依据菌落原位杂交结果,从中挑出了500个重组克隆。用其中的100个强信号的重复DNA克隆为探针对亲本小麦和玉米进行了RFLP筛选,其中80多个为玉米基因组特异的,9个与小麦有部分同源性,随后用它们探针分别对两个小麦DH群体进行RFLP分析。 4、用上文筛选的玉米特异的重复DNA克隆作探针进行RFLP分析,只有玉米的MR64克隆同时导入到两个小麦群体的各一株后代中,即普通小麦DH系的18号株和波斯小麦DH系的15号株检测到强杂交信号;另外一个克隆MR72只在4株波斯小麦DH后代中有杂交信号,这个结果首次从DNA水平上证明,的确有某些玉米特异的DNA序列通过受精作用以很低的频率转移到小麦DH后代的基因组中。 5、与小麦有部分同源性的玉米克隆MR13和MR50在一些普通小麦DH后代中检测到了缺失变异。特别是用MR13在普通小麦DH系的18号株(即导入了玉米特异的MR64的DNA的那一株小麦DH后代)的基因组中检测到了大幅度的限制性片段长度的变化,即原来的4.3kb的强信号带消失了,取而代之的是增加40kb、15kb、2.5kb和2.0kb四条杂交带,这要么与小麦基因组DNA较大的重俳事件有关,要么是由外源的玉米DNA插入造成的,但从增加的片段长度如此之大以及杂交信号变弱来看,它很可能就是玉米DNA插入到这个较强信号的小麦单拷贝序列中的结果。用小麦的DNA克隆pTa71也检测到了明显的变异。 6、测序分析发现,克隆MP64的插入片段长度为695bp,A+T含量为58%,经在GENEBANK中检索证实它是一个新克隆的DNA序列。序列中分别含有两对正向和反向重 序列及三个回文序列,对多种酶切的玉米基因组的RFLP分析表明它是一个带1-3个主串联重复单位的散布重复序列,在序列中的CCGG的第二个C高度甲基化,拷贝数约为5600左右。染色体原位杂交表明,MR64在玉米的每条染色体上均有分布,但拷贝数不同,这暗示它可能与玉米基因组的演化历程有密切的关系。 7、比较分析发现,MR64是玉米基因组特异的;而MR72在高粱、珍株粟、糜子和狼尾草等四个和玉米较近缘的种的基因组中有部分同源序列,这个比较结果更加肯定了小麦DH系所新增的DNA序列的确是异源的玉米DNA通过受精过程导入的。 8、初步分析发现,玉米的卫星DNA克隆MR4和其它卫星DNA一样也有严谨的重复等级结构,而且在主要禾本科种基因组中有较低的同源性。经在GENEBANK检索,串联重复DNA克隆MR68是一个新克隆的DNA序列,它在不同的玉米生物型基因组中表现出明显的分化特征,可用它作进一步的基因组的比较分析。 9、本文对染色体消除过程度中异源小片段DNA导入的可能机制和散布重复序列在远缘杂交的异源DNA鉴定中的应用进行了讨论,并分析了染色体消除型远缘杂交所获得的DH后代的变异来源。
Resumo:
The fungal pathogen Claviceps purpurea infects ovaries of a broad range of temperate grasses and cereals, including hexaploid wheat, causing a disease commonly known as ergot. Sclerotia produced in place of seed carry a cocktail of harmful alkaloid compounds that result in a range of symptoms in humans and animals, causing ergotism. Following a field assessment of C. purpurea infection in winter wheat, two varieties ‘Robigus’ and ‘Solstice’ were selected which consistently produced the largest differential effect on ergot sclerotia weights. They were crossed to produce a doubled haploid mapping population, and a marker map, consisting of 714 genetic loci and a total length of 2895 cM was produced. Four ergot reducing QTL were identified using both sclerotia weight and size as phenotypic parameters; QCp.niab.2A and QCp.niab.4B being detected in the wheat variety ‘Robigus’, and QCp.niab.6A and QCp.niab.4D in the variety ‘Solstice’. The ergot resistance QTL QCp.niab.4B and QCp.niab.4D peaks mapped to the same markers as the known reduced height (Rht) loci on chromosomes 4B and 4D, Rht-B1 and Rht-D1, respectively. In both cases, the reduction in sclerotia weight and size was associated with the semi-dwarfing alleles, Rht-B1b from ‘Robigus’ and Rht-D1b from ‘Solstice’. Two-dimensional, two-QTL scans identified significant additive interactions between QTL QCp.niab.4B and QCp.niab.4D, and between QCp.niab.2A and QCp.niab.4B when looking at sclerotia size, but not between QCp.niab.2A and QCp.niab.4D. The two plant height QTL, QPh.niab.4B and QPh.niab.4D, which mapped to the same locations as QCp.niab.4B and QCp.niab.4D, also displayed significant genetic interactions.
Resumo:
The advent of molecular markers as a tool to aid selection has provided plant breeders with the opportunity to rapidly deliver superior genetic solutions to problems in agricultural production systems. However, a major constraint to the implementation of marker-assisted selection (MAS) in pragmatic breeding programs in the past has been the perceived high relative cost of MAS compared to conventional phenotypic selection. In this paper, computer simulation was used to design a genetically effective and economically efficient marker-assisted breeding strategy aimed at a specific outcome. Under investigation was a strategy involving the integration of both restricted backcrossing and doubled haploid (DH) technology. The point at which molecular markers are applied in a selection strategy can be critical to the effectiveness and cost efficiency of that strategy. The application of molecular markers was considered at three phases in the strategy: allele enrichment in the BC1F1 population, gene selection at the haploid stage and the selection for recurrent parent background of DHs prior to field testing. Overall, incorporating MAS at all three stages was the most effective, in terms of delivering a high frequency of desired outcomes and at combining the selected favourable rust resistance, end use quality and grain yield alleles. However, when costs were included in the model the combination of MAS at the BC1F1 and haploid stage was identified as the optimal strategy. A detailed economic analysis showed that incorporation of marker selection at these two stages not only increased genetic gain over the phenotypic alternative but actually reduced the over all cost by 40%.
Resumo:
Yield losses due to frost in Australian wheat crop can be high and are often associated with head-frosting. Two field experiments were conducted over two seasons to investigate the genetic variation in frost tolerance in 150 double haploid lines (DHLs) derived from a cross between Kite and Bindawarra. Glycinebetaine content in the leaf blade during frost acclimation/hardening, cell membrane damage (electrolyte leakage) after frost and grain yield were measured. Significant variation in cell membrane damage was noted (16% to 85%) which was negatively correlated with grain yield (r = - 0.43; p
Resumo:
Iain S. Donnison, Donal M. O Sullivan, Ann Thomas, Peter Canter, Beverley Moore, Ian Armstead, Howard Thomas, Keith J. Edwards and Ian P. King (2005). Construction of a Festuca pratensis BAC library for map-based cloning in Festulolium substitution lines. Theoretical and Applied Genetics, 110 (5) pp.846-851 Sponsorship: BBSRC;BBSRC RAE2008
Resumo:
Introgression in Festulolium is a potentially powerful tool to isolate genes for a large number of traits which differ between Festuca pratensis Huds. and Lolium perenne L. Not only are hybrids between the two species fertile, but the two genomes can be distinguished by genomic in situ hybridisation and a high frequency of recombination occurs between homoeologous chromosomes and chromosome segments. By a programme of introgression and a series of backcrosses, L. perenne lines have been produced which contain small F. pratensis substitutions. This material is a rich source of polymorphic markers targeted towards any trait carried on the F. pratensis substitution not observed in the L. perenne background. We describe here the construction of an F. pratensis BAC library, which establishes the basis of a map-based cloning strategy in L. perenne. The library contains 49,152 clones, with an average insert size of 112 kbp, providing coverage of 2.5 haploid genome equivalents. We have screened the library for eight amplified fragment length polymorphism (AFLP) derived markers known to be linked to an F. pratensis gene introgressed into L. perenne and conferring a staygreen phenotype as a consequence of a mutation in primary chlorophyll catabolism. While for four of the markers it was possible to identify bacterial artificial chromosome (BAC) clones, the other four AFLPs were too repetitive to enable reliable identification of locus-specific BACs. Moreover, when the four BACs were partially sequenced, no obvious coding regions could be identified. This contrasted to BACs identified using cDNA sequences, when multiple genes were identified on the same BAC.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)