878 resultados para Design and operations
Resumo:
This paper discusses demand and supply chain management and examines how artificial intelligence techniques and RFID technology can enhance the responsiveness of the logistics workflow. This proposed system is expected to have a significant impact on the performance of logistics networks by virtue of its capabilities to adapt unexpected supply and demand changes in the volatile marketplace with the unique feature of responsiveness with the advanced technology, Radio Frequency Identification (RFID). Recent studies have found that RFID and artificial intelligence techniques drive the development of total solution in logistics industry. Apart from tracking the movement of the goods, RFID is able to play an important role to reflect the inventory level of various distribution areas. In today’s globalized industrial environment, the physical logistics operations and the associated flow of information are the essential elements for companies to realize an efficient logistics workflow scenario. Basically, a flexible logistics workflow, which is characterized by its fast responsiveness in dealing with customer requirements through the integration of various value chain activities, is fundamental to leverage business performance of enterprises. The significance of this research is the demonstration of the synergy of using a combination of advanced technologies to form an integrated system that helps achieve lean and agile logistics workflow.
Resumo:
Removal of dissolved salts and toxic chemicals in water, especially at a few parts per million (ppm) levels is one of the most difficult problems. There are several methods used for water purification. The choice of the method depends mainly on the level of feed water salinity, source of energy and type of contaminants present. Distillation is an age old method which can remove all types of dissolved impurities from contaminated water. In multiple effect distillation (MED) latent heat of steam is recycled several times to produce many units of distilled water with one unit of primary steam input. This is already being used in large capacity plants for treating sea water. But the challenge lies in designing a system for small scale operations that can treat a few cubic meters of water per day, especially suitable for rural communities where the available water is brackish. A small scale MED unit with an extendable number of effects has been designed and analyzed for optimum yield in terms of total distillate produced. © 2010 Elsevier B.V.
Resumo:
A man-machine system called teleoperator system has been developed to work in hazardous environments such as nuclear reactor plants. Force reflection is a type of force feedback in which forces experienced by the remote manipulator are fed back to the manual controller. In a force-reflecting teleoperation system, the operator uses the manual controller to direct the remote manipulator and receives visual information from a video image and/or graphical animation on the computer screen. This thesis presents the design of a portable Force-Reflecting Manual Controller (FRMC) for the teleoperation of tasks such as hazardous material handling, waste cleanup, and space-related operations. The work consists of the design and construction of a prototype 1-Degree-of-Freedom (DOF) FRMC, the development of the Graphical User Interface (GUI), and system integration. Two control strategies - PID and fuzzy logic controllers are developed and experimentally tested. The system response of each is analyzed and evaluated. In addition, the concept of a telesensation system is introduced, and a variety of design alternatives of a 3-DOF FRMC are proposed for future development.
Resumo:
The objective of this study is to design and development of an enzyme-linked biosensor for detection and quantification of phosphate species. Various concentrations of phosphate species were tested and completed for this study. Phosphate is one of the vital nutrients for all living organisms. Phosphate compounds can be found in nature (e.g., water sediments), and they often exist in aninorganic form. The amount of phosphates in the environment strongly influences the operations of living organisms. Excess amount of phosphate in the environment causes eutrophication which in turn causes oxygen deficit for the other living organisms. Fish die and degradation of habitat in the water occurs as a result of eutrophication. In contrast, low phosphate concentration causes death of vegetation since plants utilize the inorganic phosphate for photosynthesis, respiration, and regulation of enzymes. Therefore, the phosphate quantity in lakes and rivers must be monitored. Result demonstrated that phosphate species could be detected in various organisms via enzyme-linked biosensor in this research.
Resumo:
Database design is a difficult problem for non-expert designers. It is desirable to assist such designers during the problem solving process by means of a knowledge based (KB) system. Although a number of prototype KB systems have been proposed, there are many shortcomings. Firstly, few have incorporated sufficient expertise in modeling relationships, particularly higher order relationships. Secondly, there does not seem to be any published empirical study that experimentally tested the effectiveness of any of these KB tools. Thirdly, problem solving behavior of non-experts, whom the systems were intended to assist, has not been one of the bases for system design. In this project, a consulting system, called CODA, for conceptual database design that addresses the above short comings was developed and empirically validated. More specifically, the CODA system incorporates (a) findings on why non-experts commit errors and (b) heuristics for modeling relationships. Two approaches to knowledge base implementation were used and compared in this project, namely system restrictiveness and decisional guidance (Silver 1990). The Restrictive system uses a proscriptive approach and limits the designer's choices at various design phases by forcing him/her to follow a specific design path. The Guidance system approach, which is less restrictive, involves providing context specific, informative and suggestive guidance throughout the design process. Both the approaches would prevent erroneous design decisions. The main objectives of the study are to evaluate (1) whether the knowledge-based system is more effective than the system without a knowledge-base and (2) which approach to knowledge implementation - whether Restrictive or Guidance - is more effective. To evaluate the effectiveness of the knowledge base itself, the systems were compared with a system that does not incorporate the expertise (Control). An experimental procedure using student subjects was used to test the effectiveness of the systems. The subjects solved a task without using the system (pre-treatment task) and another task using one of the three systems, viz. Control, Guidance or Restrictive (experimental task). Analysis of experimental task scores of those subjects who performed satisfactorily in the pre-treatment task revealed that the knowledge based approach to database design support lead to more accurate solutions than the control system. Among the two KB approaches, Guidance approach was found to lead to better performance when compared to the Control system. It was found that the subjects perceived the Restrictive system easier to use than the Guidance system.
Resumo:
Scientific applications rely heavily on floating point data types. Floating point operations are complex and require complicated hardware that is both area and power intensive. The emergence of massively parallel architectures like Rigel creates new challenges and poses new questions with respect to floating point support. The massively parallel aspect of Rigel places great emphasis on area efficient, low power designs. At the same time, Rigel is a general purpose accelerator and must provide high performance for a wide class of applications. This thesis presents an analysis of various floating point unit (FPU) components with respect to Rigel, and attempts to present a candidate design of an FPU that balances performance, area, and power and is suitable for massively parallel architectures like Rigel.
Design and Development of a Research Framework for Prototyping Control Tower Augmented Reality Tools
Resumo:
The purpose of the air traffic management system is to ensure the safe and efficient flow of air traffic. Therefore, while augmenting efficiency, throughput and capacity in airport operations, attention has rightly been placed on doing it in a safe manner. In the control tower, many advances in operational safety have come in the form of visualization tools for tower controllers. However, there is a paradox in developing such systems to increase controllers' situational awareness: by creating additional computer displays, the controller's vision is pulled away from the outside view and the time spent looking down at the monitors is increased. This reduces their situational awareness by forcing them to mentally and physically switch between the head-down equipment and the outside view. This research is based on the idea that augmented reality may be able to address this issue. The augmented reality concept has become increasingly popular over the past decade and is being proficiently used in many fields, such as entertainment, cultural heritage, aviation, military & defense. This know-how could be transferred to air traffic control with a relatively low effort and substantial benefits for controllers’ situation awareness. Research on this topic is consistent with SESAR objectives of increasing air traffic controllers’ situation awareness and enable up to 10 % of additional flights at congested airports while still increasing safety and efficiency. During the Ph.D., a research framework for prototyping augmented reality tools was set up. This framework consists of methodological tools for designing the augmented reality overlays, as well as of hardware and software equipment to test them. Several overlays have been designed and implemented in a simulated tower environment, which is a virtual reconstruction of Bologna airport control tower. The positive impact of such tools was preliminary assessed by means of the proposed methodology.
Resumo:
The Internet of Things (IoT) has grown rapidly in recent years, leading to an increased need for efficient and secure communication between connected devices. Wireless Sensor Networks (WSNs) are composed of small, low-power devices that are capable of sensing and exchanging data, and are often used in IoT applications. In addition, Mesh WSNs involve intermediate nodes forwarding data to ensure more robust communication. The integration of Unmanned Aerial Vehicles (UAVs) in Mesh WSNs has emerged as a promising solution for increasing the effectiveness of data collection, as UAVs can act as mobile relays, providing extended communication range and reducing energy consumption. However, the integration of UAVs and Mesh WSNs still poses new challenges, such as the design of efficient control and communication strategies. This thesis explores the networking capabilities of WSNs and investigates how the integration of UAVs can enhance their performance. The research focuses on three main objectives: (1) Ground Wireless Mesh Sensor Networks, (2) Aerial Wireless Mesh Sensor Networks, and (3) Ground/Aerial WMSN integration. For the first objective, we investigate the use of the Bluetooth Mesh standard for IoT monitoring in different environments. The second objective focuses on deploying aerial nodes to maximize data collection effectiveness and QoS of UAV-to-UAV links while maintaining the aerial mesh connectivity. The third objective investigates hybrid WMSN scenarios with air-to-ground communication links. One of the main contribution of the thesis consists in the design and implementation of a software framework called "Uhura", which enables the creation of Hybrid Wireless Mesh Sensor Networks and abstracts and handles multiple M2M communication stacks on both ground and aerial links. The operations of Uhura have been validated through simulations and small-scale testbeds involving ground and aerial devices.
Resumo:
Herein we describe the synthesis of a focused library of compounds based on the structure of goniothalamin (1) and the evaluation of the potential antitumor activity of the compounds. N-Acylation of aza-goniothalamin (2) restored the in vitro antiproliferative activity of this family of compounds. 1-(E)-But-2-enoyl-6-styryl-5,6-dihydropyridin-2(1H)-one (18) displayed enhanced antiproliferative activity. Both goniothalamin (1) and derivative 18 led to reactive oxygen species generation in PC-3 cells, which was probably a signal for caspase-dependent apoptosis. Treatment with derivative 18 promoted Annexin V/7-aminoactinomycin D double staining, which indicated apoptosis, and also led to G2 /M cell-cycle arrest. In vivo studies in Ehrlich ascitic and solid tumor models confirmed the antitumor activity of goniothalamin (1), without signs of toxicity. However, derivative 18 exhibited an unexpectedly lower in vivo antitumor activity, despite the treatments being administered at the same site of inoculation. Contrary to its in vitro profile, aza-goniothalamin (2) inhibited Ehrlich tumor growth, both on the ascitic and solid forms. Our findings highlight the importance of in vivo studies in the search for new candidates for cancer treatment.
Resumo:
This study evaluated the effect of specimens' design and manufacturing process on microtensile bond strength, internal stress distributions (Finite Element Analysis - FEA) and specimens' integrity by means of Scanning Electron Microscopy (SEM) and Laser Scanning Confocal Microscopy (LCM). Excite was applied to flat enamel surface and a resin composite build-ups were made incrementally with 1-mm increments of Tetric Ceram. Teeth were cut using a diamond disc or a diamond wire, obtaining 0.8 mm² stick-shaped specimens, or were shaped with a Micro Specimen Former, obtaining dumbbell-shaped specimens (n = 10). Samples were randomly selected for SEM and LCM analysis. Remaining samples underwent microtensile test, and results were analyzed with ANOVA and Tukey test. FEA dumbbell-shaped model resulted in a more homogeneous stress distribution. Nonetheless, they failed under lower bond strengths (21.83 ± 5.44 MPa)c than stick-shaped specimens (sectioned with wire: 42.93 ± 4.77 MPaª; sectioned with disc: 36.62 ± 3.63 MPa b), due to geometric irregularities related to manufacturing process, as noted in microscopic analyzes. It could be concluded that stick-shaped, nontrimmed specimens, sectioned with diamond wire, are preferred for enamel specimens as they can be prepared in a less destructive, easier, and more precise way.
Resumo:
This paper revisits the design of L and S band bridged loop-gap resonators (BLGRs) for electron paramagnetic resonance applications. A novel configuration is described and extensively characterized for resonance frequency and quality factor as a function of the geometrical parameters of the device. The obtained experimental results indicate higher values of the quality factor (Q) than previously reported in the literature, and the experimental analysis data should provide useful guidelines for BLGR design.
Resumo:
Background: The MASS IV-DM Trial is a large project from a single institution, the Heart Institute (InCor), University of Sao Paulo Medical School, Brazil to study ventricular function and coronary arteries in patients with type 2 diabetes mellitus. Methods/Design: The study will enroll 600 patients with type 2 diabetes who have angiographically normal ventricular function and coronary arteries. The goal of the MASS IV-DM Trial is to achieve a long-term evaluation of the development of coronary atherosclerosis by using angiograms and coronary-artery calcium scan by electron-beam computed tomography at baseline and after 5 years of follow-up. In addition, the incidence of major cardiovascular events, the dysfunction of various organs involved in this disease, particularly microalbuminuria and renal function, will be analyzed through clinical evaluation. In addition, an effort will be made to investigate in depth the presence of major cardiovascular risk factors, especially the biochemical profile, metabolic syndrome inflammatory activity, oxidative stress, endothelial function, prothrombotic factors, and profibrinolytic and platelet activity. An evaluation will be made of the polymorphism as a determinant of disease and its possible role in the genesis of micro- and macrovascular damage. Discussion: The MASS IV-DM trial is designed to include diabetic patients with clinically suspected myocardial ischemia in whom conventional angiography shows angiographically normal coronary arteries. The result of extensive investigation including angiographic follow-up by several methods, vascular reactivity, pro-thrombotic mechanisms, genetic and biochemical studies may facilitate the understanding of so-called micro- and macrovascular disease of DM.
Resumo:
We have modeled, fabricated, and characterized superhydrophobic surfaces with a morphology formed of periodic microstructures which are cavities. This surface morphology is the inverse of that generally reported in the literature when the surface is formed of pillars or protrusions, and has the advantage that when immersed in water the confined air inside the cavities tends to expel the invading water. This differs from the case of a surface morphology formed of pillars or protrusions, for which water can penetrate irreversibly among the microstructures, necessitating complete drying of the surface in order to again recover its superhydrophobic character. We have developed a theoretical model that allows calculation of the microcavity dimensions needed to obtain superhydrophobic surfaces composed of patterns of such microcavities, and that provides estimates of the advancing and receding contact angle as a function of microcavity parameters. The model predicts that the cavity aspect ratio (depth-to-diameter ratio) can be much less than unity, indicating that the microcavities do not need to be deep in order to obtain a surface with enhanced superhydrophobic character. Specific microcavity patterns have been fabricated in polydimethylsiloxane and characterized by scanning electron microscopy, atomic force microscopy, and contact angle measurements. The measured advancing and receding contact angles are in good agreement with the predictions of the model. (C) 2010 American Institute of Physics. [doi:10.1063/1.3466979]
Resumo:
We have developed a theoretical model for superhydrophobic surfaces that are formed from an extended array of microcavities, and have fabricated specific microcavity patterns to form superhydrophobic surfaces of the kind modeled. The model shows that the cavity aspect ratio can be significantly less than unity, indicating that the microcavities do not need to be deep in order to enhance the superhydrophobic character of the surface. We have fabricated surfaces of this kind and measured advancing contact angle as high as 153 degrees, in agreement with predictions of the model.
Resumo:
This paper presents a novel graphical approach to adjust and evaluate frequency-based relays employed in anti-islanding protection schemes of distributed synchronous generators, in order to meet the anti-islanding and abnormal frequency variation requirements, simultaneously. The proposed method defines a region in the power mismatch space, inside which the relay non-detection zone should be located, if the above-mentioned requirements must be met. Such region is called power imbalance application region. Results show that this method can help protection engineers to adjust frequency-based relays to improve the anti-islanding capability and to minimize false operation occurrences, keeping the abnormal frequency variation utility requirements satisfied. Moreover, the proposed method can be employed to coordinate different types of frequency-based relays, aiming at improving overall performance of the distributed generator frequency protection scheme. (C) 2011 Elsevier B.V. All rights reserved.