1000 resultados para Descoberta de conhecimento


Relevância:

60.00% 60.00%

Publicador:

Resumo:

As técnicas que formam o campo da Descoberta de Conhecimento em Bases de Dados (DCBD) surgiram devido à necessidade de se tratar grandes volumes de dados. O processo completo de DCBD envolve um elevado grau de subjetividade e de trabalho não totalmente automatizado. Podemos dizer que a fase mais automatizada é a de Mineração de Dados (MD). Uma importante técnica para extração de conhecimentosa partir de dados é a Programação Lógica Indutiva (PLI), que se aplica a tarefas de classificação, induzindo conhecimento na forma da lógica de primeira ordem. A PLI tem demonstrado as vantagens de seu aparato de aprendizado em relação a outras abordagens, como por exemplo, aquelas baseadas em aprendizado proposicional Os seus algorítmos de aprendizado apresentam alta expressividade, porém sofrem com a grande complexidade de seus processos, principalmente o teste de corbertura das variáveis. Por outro lado, as Redes Neurais Artificiais (RNs) introduzem um ótimo desempenho devido à sua natureza paralela. às RNs é que geralmente são "caixas pretas", o que torna difícil a obtenção de um interpretação razoável da estrutura geral da rede na forma de construções lógicas de fácil compreensão Várias abordagens híbridas simbólico-conexionistas (por exemplo, o MNC MAC 890 , KBANN SHA 94 , TOW 94 e o sistema INSS OSO 98 têm sido apresentadas para lidar com este problema, permitindo o aprendizado de conhecimento simbólico através d euma RN. Entretanto, estas abordagens ainda lidam com representações atributo-valor. Neste trabalho é apresentado um modelo que combina a expressividade obtida pela PLI com o desempenho de uma rede neural: A FOLONET (First Order Neural Network).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta tese apresenta contribuições ao processo de Descoberta de Conhecimento em Bases de Dados (DCBD). DCBD pode ser entendido como um conjunto de técnicas automatizadas – ou semi-automatizadas – otimizadas para extrair conhecimento a partir de grandes bases de dados. Assim, o já, de longa data, praticado processo de descoberta de conhecimento passa a contar com aprimoramentos que o tornam mais fácil de ser realizado. A partir dessa visão, bem conhecidos algoritmos de Estatística e de Aprendizado de Máquina passam a funcionar com desempenho aceitável sobre bases de dados cada vez maiores. Da mesma forma, tarefas como coleta, limpeza e transformação de dados e seleção de atributos, parâmetros e modelos recebem um suporte que facilita cada vez mais a sua execução. A contribuição principal desta tese consiste na aplicação dessa visão para a otimização da descoberta de conhecimento a partir de dados não-classificados. Adicionalmente, são apresentadas algumas contribuições sobre o Modelo Neural Combinatório (MNC), um sistema híbrido neurossimbólico para classificação que elegemos como foco de trabalho. Quanto à principal contribuição, percebeu-se que a descoberta de conhecimento a partir de dados não-classificados, em geral, é dividida em dois subprocessos: identificação de agrupamentos (aprendizado não-supervisionado) seguida de classificação (aprendizado supervisionado). Esses subprocessos correspondem às tarefas de rotulagem dos itens de dados e obtenção das correlações entre os atributos da entrada e os rótulos. Não encontramos outra razão para que haja essa separação que as limitações inerentes aos algoritmos específicos. Uma dessas limitações, por exemplo, é a necessidade de iteração de muitos deles buscando a convergência para um determinado modelo. Isto obriga a que o algoritmo realize várias leituras da base de dados, o que, para Mineração de Dados, é proibitivo. A partir dos avanços em DCBD, particularmente com o desenvolvimento de algoritmos de aprendizado que realizam sua tarefa em apenas uma leitura dos dados, fica evidente a possibilidade de se reduzir o número de acessos na realização do processo completo. Nossa contribuição, nesse caso, se materializa na proposta de uma estrutura de trabalho para integração dos dois paradigmas e a implementação de um protótipo dessa estrutura utilizando-se os algoritmos de aprendizado ART1, para identificação de agrupamentos, e MNC, para a tarefa de classificação. É também apresentada uma aplicação no mapeamento de áreas homogêneas de plantio de trigo no Brasil, de 1975 a 1999. Com relação às contribuições sobre o MNC são apresentados: (a) uma variante do algoritmo de treinamento que permite uma redução significativa do tamanho do modelo após o aprendizado; (b) um estudo sobre a redução da complexidade do modelo com o uso de máquinas de comitê; (c) uma técnica, usando o método do envoltório, para poda controlada do modelo final e (d) uma abordagem para tratamento de inconsistências e perda de conhecimento que podem ocorrer na construção do modelo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Esta pesquisa tem como tema a avaliação de ferramentas de mineração de dados disponíveis no mercado, de acordo com um site de descoberta do conhecimento, chamado Kdnuggets (http://www.kdnuggets.com). A escolha deste tema justifica-se pelo fato de tratar-se de uma nova tecnologia de informação que vem disponibilizando diversas ferramentas com grandes promessas e altos investimentos, mas que, por outro lado, ainda não é amplamente utilizada pelos tomadores de decisão das organizações. Uma das promessas desta tecnologia é vasculhar grandes bases de dados em busca de informações relevantes e desconhecidas e que não poderiam ser obtidas através de sistemas chamados convencionais. Neste contexto, realizar uma avaliação de algumas destas ferramentas pode auxiliar a estes decisores quanto à veracidade daquilo que é prometido sem ter de investir antes de estar seguro do cumprimento de tais promessas. O foco da pesquisa é avaliar sistemas que permitem a realização da análise de cesta de supermercado (market basket analysis) utilizando bases de dados reais de uma rede de supermercados. Os seus objetivos são: avaliar ferramentas de mineração de dados como fonte de informações relevantes para a tomada de decisão; identificar, através da revisão de literatura, as promessas da tecnologia e verificar se tais promessas são cumpridas pelas ferramentas; identificar e caracterizar ferramentas de mineração de dados disponíveis no mercado e comparar os tipos de resultados gerados pelas diferentes ferramentas e relatar problemas encontrados durante a aplicação destas ferramentas. O desenvolvimento do trabalho segue o método estudo de caso múltiplo: os dados foram coletados a partir da aplicação das ferramentas às bases de dados e da entrevista com tomadores de decisão da empresa. Foram seguidos procedimentos já utilizados de avaliação de sistemas para a realização desta pesquisa. A partir da análise dos dados coletados, pôde-se conhecer alguns problemas apresentados pelas ferramentas e concluiu-se que as ferramentas, que foram utilizadas neste trabalho, não estão prontas para serem disponibilizadas no mercado.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho é dedicado ao estudo e à aplicação da mineração de regras de associação a fim de descobrir padrões de navegação no ambiente Web. As regras de associação são padrões descritivos que representam a probabilidade de um conjunto de itens aparecer em uma transação visto que outro conjunto está presente. Dentre as possibilidades de aplicação da mineração de dados na Web, a mineração do seu uso consiste na extração de regras e padrões que descrevam o perfil dos visitantes aos sites e o seu comportamento navegacional. Neste contexto, alguns trabalhos já foram propostos, contudo diversos pontos foram deixados em aberto por seus autores. O objetivo principal deste trabalho é a apresentação de um modelo para a extração de regras de associação aplicado ao uso da Web. Este modelo, denominado Access Miner, caracteriza-se por enfocar as etapas do processo de descoberta do conhecimento desde a obtenção dos dados até a apresentação das regras obtidas ao analista. Características específicas do domínio foram consideradas, como a estrutura do site, para o pósprocessamento das regras mineradas a fim de selecionar as potencialmente mais interessantes e reduzir a quantidade de regras a serem apreciadas. O projeto possibilitou a implementação de uma ferramenta para a automação das diversas etapas do processo, sendo consideradas, na sua construção, as características de interatividade e iteratividade, necessárias para a descoberta e consolidação do conhecimento. Finalmente, alguns resultados foram obtidos a partir da aplicação desta ferramenta em dois casos, de forma que o modelo proposto pôde ser validado.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mineração de dados constitui o processo de descoberta de conhecimento interessante, com a utilização de métodos e técnicas que permitem analisar grandes conjuntos de dados para a extração de informação previamente desconhecida, válida e que gera ações úteis, de grande ajuda para a tomada de decisões estratégicas. Dentre as tarefas de mineração de dados, existem aquelas que realizam aprendizado não-supervisionado, o qual é aplicado em bases de dados não-classificados, em que o algoritmo extrai as características dos dados fornecidos e os agrupa em classes. Geralmente, o aprendizado não-supervisionado é aplicado em tarefas de agrupamento, que consistem em agrupar os dados de bancos de dados volumosos, com diferentes tipos de dados em classes ou grupos de objetos que são similares dentro de um mesmo grupo e dissimilares em diferentes grupos desses bancos de dados, de acordo com alguma medida de similaridade. Os agrupamentos são usados como ponto de partida para futuras investigações. Este trabalho explora, mediante a realização de um estudo de caso, o uso de agrupamento como tarefa de mineração de dados que realiza aprendizado nãosupervisionado, para avaliar a adequação desta tecnologia em uma base de dados real da área de saúde. Agrupamento é um tema ativo em pesquisas da área pelo seu potencial de aplicação em problemas práticos. O cenário da aplicação é o Sistema de Informações Hospitalares do SUS, sob a gestão da Secretaria Estadual de Saúde do Rio Grande do Sul. Mensalmente, o pagamento de um certo número de internações é bloqueado, uma vez que a cobrança de internações hospitalares é submetida a normas do SUS e a critérios técnicos de bloqueio estabelecidos pela Auditoria Médica da SES para verificar a ocorrência de algum tipo de impropriedade na cobrança dos procedimentos realizados nessas internações hospitalares. A análise de agrupamento foi utilizada para identificar perfis de comportamentos ou tendências nas internações hospitalares e avaliar desvios ou outliers em relação a essas tendências e, com isso, descobrir padrões interessantes que auxiliassem na otimização do trabalho dos auditores médicos da SES. Buscou-se ainda compreender as diferentes configurações de parâmetros oferecidos pela ferramenta escolhida para a mineração de dados, o IBM Intelligent Miner, e o mapeamento de uma metodologia de mineração de dados, o CRISP-DM, para o contexto específico deste estudo de caso. Os resultados deste estudo demonstram possibilidades de criação e melhora dos critérios técnicos de bloqueio das internações hospitalares que permitem a otimização do trabalho de auditores médicos da SES. Houve ainda ganhos na compreensão da tecnologia de mineração de dados com a utilização de agrupamento no que se refere ao uso de uma ferramenta e de uma metodologia de mineração de dados, em que erros e acertos evidenciam os cuidados que devem ser tomados em aplicações dessa tecnologia, além de contribuírem para o seu aperfeiçoamento.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A classificação é uma das tarefas da Mineração de Dados. Esta consiste na aplicação de algoritmos específicos para produzir uma enumeração particular de padrões. Já a classificação é o processo de gerar uma descrição, ou um modelo, para cada classe a partir de um conjunto de exemplos dados. Os métodos adequados e mais utilizados para induzir estes modelos, ou classificadores, são as árvores de decisão e as regras de classificação. As regras e árvores de decisão são populares, principalmente, por sua simplicidade, flexibilidade e interpretabilidade. Entretanto, como a maioria dos algoritmos de indução particionam recursivamente os dados, o processamento pode tornar-se demorado, e a árvore construída pode ser muito grande e complexa, propensa ao overfitting dos dados, que ocorre quando o modelo aprende detalhadamente ao invés de generalizar. Os conjuntos de dados reais para aplicação em Mineração de Dados são, atualmente, muito grandes, e envolvem vários milhares de registros, sendo necessária, também, uma forma de generalizar estes dados. Este trabalho apresenta um novo modelo de indução de classificadores, em que o principal diferencial do algoritmo proposto é a única passada pelo conjunto de treinamento durante o processo de indução, bem como a sua inspiração proveniente de um Sistema Multiagente. Foi desenvolvido um protótipo, o Midas, que foi validado e avaliado com dados de repositórios. O protótipo também foi aplicado em bases de dados reais, com o objetivo de generalizar as mesmas. Inicialmente, foi estudado e revisado o tema de Descoberta de Conhecimento em Bases de Dados, com ênfase nas técnicas e métodos de Mineração de Dados. Neste trabalho, também são apresentadas, com detalhes, as árvores e regras de decisão, com suas técnicas e algoritmos mais conhecidos. Finalizando, o algoritmo proposto e o protótipo desenvolvido são apresentados, bem como os resultados provenientes da validação e aplicação do mesmo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A maioria das empresas interage com seus clientes através de computadores. Com o passar do tempo está armazenado nos computadores um histórico da atividade da empresa que pode ser explorado para a melhoria do processo de tomada de decisões. Ferramentas de descoberta de conhecimento em bancos de dados exploram este histórico a fim de extrair vários tipos de informação. Um dos tipos de informação que pode ser extraída destes tipos de bancos de dados são as regras de associação que consistem em relacionamentos ou dependências importantes entre itens tal que a presença de alguns itens em uma transação irá implicar a presença de outros itens na mesma transação. Neste trabalho são aplicadas técnicas de descoberta de conhecimento na área do comércio varejista de confecção. Foram detectadas algumas peculiaridades dos bancos de dados desta área sendo proposto um novo algoritmo para melhorar o desempenho da tarefa de extração de regras de associação. Para a validação dos resultados apresentados pelo algoritmo foi desenvolvido o protótipo de uma ferramenta para extração de regras de associação. Foram realizados experimentos com bancos de dados reais de uma empresa da área de comércio varejista de confecção para análise de desempenho do algoritmo.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este trabalho apresenta um estudo de caso de mineração de dados no varejo. O negócio em questão é a comercialização de móveis e materiais de construção. A mineração foi realizada sobre informações geradas das transações de vendas por um período de 8 meses. Informações cadastrais de clientes também foram usadas e cruzadas com informações de venda, visando obter resultados que possam ser convertidos em ações que, por conseqüência, gerem lucro para a empresa. Toda a modelagem, preparação e transformação dos dados, foi feita visando facilitar a aplicação das técnicas de mineração que as ferramentas de mineração de dados proporcionam para a descoberta de conhecimento. O processo foi detalhado para uma melhor compreensão dos resultados obtidos. A metodologia CRISP usada no trabalho também é discutida, levando-se em conta as dificuldades e facilidades que se apresentaram durante as fases do processo de obtenção dos resultados. Também são analisados os pontos positivos e negativos das ferramentas de mineração utilizadas, o IBM Intelligent Miner e o WEKA - Waikato Environment for Knowledge Analysis, bem como de todos os outros softwares necessários para a realização do trabalho. Ao final, os resultados obtidos são apresentados e discutidos, sendo também apresentada a opinião dos proprietários da empresa sobre tais resultados e qual valor cada um deles poderá agregar ao negócio.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A descoberta e a análise de conglomerados textuais são processos muito importantes para a estruturação, organização e a recuperação de informações, assim como para a descoberta de conhecimento. Isto porque o ser humano coleta e armazena uma quantidade muito grande de dados textuais, que necessitam ser vasculhados, estudados, conhecidos e organizados de forma a fornecerem informações que lhe dêem o conhecimento para a execução de uma tarefa que exija a tomada de uma decisão. É justamente nesse ponto que os processos de descoberta e de análise de conglomerados (clustering) se insere, pois eles auxiliam na exploração e análise dos dados, permitindo conhecer melhor seu conteúdo e inter-relações. No entanto, esse processo, por ser aplicado em textos, está sujeito a sofrer interferências decorrentes de problemas da própria linguagem e do vocabulário utilizado nos mesmos, tais como erros ortográficos, sinonímia, homonímia, variações morfológicas e similares. Esta Tese apresenta uma solução para minimizar esses problemas, que consiste na utilização de “conceitos” (estruturas capazes de representar objetos e idéias presentes nos textos) na modelagem do conteúdo dos documentos. Para tanto, são apresentados os conceitos e as áreas relacionadas com o tema, os trabalhos correlatos (revisão bibliográfica), a metodologia proposta e alguns experimentos que permitem desenvolver determinados argumentos e comprovar algumas hipóteses sobre a proposta. As conclusões principais desta Tese indicam que a técnica de conceitos possui diversas vantagens, dentre elas a utilização de uma quantidade muito menor, porém mais representativa, de descritores para os documentos, o que torna o tempo e a complexidade do seu processamento muito menor, permitindo que uma quantidade muito maior deles seja analisada. Outra vantagem está no fato de o poder de expressão de conceitos permitir que os usuários analisem os aglomerados resultantes muito mais facilmente e compreendam melhor seu conteúdo e forma. Além do método e da metodologia proposta, esta Tese possui diversas contribuições, entre elas vários trabalhos e artigos desenvolvidos em parceria com outros pesquisadores e colegas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A modelagem conceitual de banco de dados geográficos (BDG) é um aspecto fundamental para o reuso, uma vez que a realidade geográfica é bastante complexa e, mais que isso, parte dela é utilizada recorrentemente na maioria dos projetos de BDG. A modelagem conceitual garante a independência da implementação do banco de dados e melhora a documentação do projeto, evitando que esta seja apenas um conjunto de documentos escritos no jargão da aplicação. Um modelo conceitual bem definido oferece uma representação canônica da realidade geográfica, possibilitando o reuso de subesquemas. Para a obtenção dos sub-esquemas a serem reutilizados, o processo de Descoberta de Conhecimento em Bancos de Dados (DCBD – KDD) pode ser aplicado. O resultado final do DCBD produz os chamados padrões de análise. No escopo deste trabalho os padrões de análise constituem os sub-esquemas reutilizáveis da modelagem conceitual de um banco de dados. O processo de DCBD possui várias etapas, desde a seleção e preparação de dados até a mineração e pós-processamento (análise dos resultados). Na preparação dos dados, um dos principais problemas a serem enfrentados é a possível heterogeneidade de dados. Neste trabalho, visto que os dados de entrada são os esquemas conceituais de BDG, e devido à inexistência de um padrão de modelagem de BDG largamente aceito, as heterogeneidades tendem a aumentar. A preparação dos dados deve integrar diferentes esquemas conceituais, baseados em diferentes modelos de dados e projetados por diferentes grupos, trabalhando autonomamente como uma comunidade distribuída. Para solucionar os conflitos entre esquemas conceituais foi desenvolvida uma metodologia, suportada por uma arquitetura de software, a qual divide a fase de préprocessamento em duas etapas, uma sintática e uma semântica. A fase sintática visa converter os esquemas em um formato canônico, a Geographic Markup Language (GML). Um número razoável de modelos de dados deve ser considerado, em conseqüência da inexistência de um modelo de dados largamente aceito como padrão para o projeto de BDG. Para cada um dos diferentes modelos de dados um conjunto de regras foi desenvolvido e um wrapper implementado. Para suportar a etapa semântica da integração uma ontologia é utilizada para integrar semanticamente os esquemas conceituais dos diferentes projetos. O algoritmo para consulta e atualização da base de conhecimento consiste em métodos matemáticos de medida de similaridade entre os conceitos. Uma vez os padrões de análise tendo sido identificados eles são armazenados em uma base de conhecimento que deve ser de fácil consulta e atualização. Novamente a ontologia pode ser utilizada como a base de conhecimento, armazenando os padrões de análise e possibilitando que projetistas a consultem durante a modelagem de suas aplicações. Os resultados da consulta ajudam a comparar o esquema conceitual em construção com soluções passadas, aceitas como corretas.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mineração de dados é o núcleo do processo de descoberta de conhecimento em base de dados. Durante a mineração podem ser aplicadas diversas técnicas para a extração de conhecimento. Cada técnica disponível visa à realização de um objetivo e é executada de uma forma em particular. O foco desta dissertação é uma destas técnicas conhecida como detecção de desvios. A detecção de desvios é baseada no reconhecimento do padrão existente nos dados avaliados e a capacidade de identificar valores que não suportem o padrão identificado. Este trabalho propõe uma sistemática de avaliação dos dados, com o objetivo de identificar os registros que destoam do padrão encontrado. Para este estudo são aplicadas algumas técnicas de avaliação estatística. Inicialmente é apresentada uma revisão bibliográfica sobre descoberta de conhecimento em base de dados (DCBD) e mineração de dados (MD). Na seqüência, são apresentados os principais conceitos que auxiliam na definição do que é um desvio, quais as técnicas utilizadas para a detecção e a forma de avaliação do mesmo. Dando continuidade ao trabalho, a sistemática CRISP_DM é descrita por ser aplicada aos estudos de casos realizados. A seguir, são descritos os estudos de casos realizados que utilizaram as bases da Secretaria da Saúde do Rio Grande do Sul (SES). Finalmente, são apresentados as conclusões do estudo e possíveis trabalhos futuros.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Telecommunication is one of the most dynamic and strategic areas in the world. Many technological innovations has modified the way information is exchanged. Information and knowledge are now shared in networks. Broadband Internet is the new way of sharing contents and information. This dissertation deals with performance indicators related to maintenance services of telecommunications networks and uses models of multivariate regression to estimate churn, which is the loss of customers to other companies. In a competitive environment, telecommunications companies have devised strategies to minimize the loss of customers. Loosing customers presents a higher cost than obtaining new ones. Corporations have plenty of data stored in a diversity of databases. Usually the data are not explored properly. This work uses the Knowledge Discovery in Databases (KDD) to establish rules and new models to explain how churn, as a dependent variable, are related to a diversity of service indicators, such as time to deploy the service (in hours), time to repair (in hours), and so on. Extraction of meaningful knowledge is, in many cases, a challenge. Models were tested and statistically analyzed. The work also shows results that allows the analysis and identification of which quality services indicators influence the churn. Actions are also proposed to solve, at least in part, this problem

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nowadays, telecommunications is one of the most dynamic and strategic areas in the world. Organizations are always seeking to find new management practices within an ever increasing competitive environment where resources are getting scarce. In this scenario, data obtained from business and corporate processes have even greater importance, although this data is not yet adequately explored. Knowledge Discovery in Databases (KDD) appears then, as an option to allow the study of complex problems in different areas of management. This work proposes both a systematization of KDD activities using concepts from different methodologies, such as CRISP-DM, SEMMA and FAYYAD approaches and a study concerning the viability of multivariate regression analysis models to explain corporative telecommunications sales using performance indicators. Thus, statistical methods were outlined to analyze the effects of such indicators on the behavior of business productivity. According to business and standard statistical analysis, equations were defined and fit to their respective determination coefficients. Tests of hypotheses were also conducted on parameters with the purpose of validating the regression models. The results show that there is a relationship between these development indicators and the amount of sales

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The relevance of rising healthcare costs is a main topic in complementary health companies in Brazil. In 2011, these expenses consumed more than 80% of the monthly health insurance in Brazil. Considering the administrative costs, it is observed that the companies operating in this market work, on average, at the threshold between profit and loss. This paper presents results after an investigation of the welfare costs of a health plan company in Brazil. It was based on the KDD process and explorative Data Mining. A diversity of results is presented, such as data summarization, providing compact descriptions of the data, revealing common features and intrinsic observations. Among the key findings was observed that a small portion of the population is responsible for the most demanding of resources devoted to health care

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)