999 resultados para Dense Plasma


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Similarly to the case of LIF (Laser-Induced Fluorescence), an equally revolutionary impact to science is expected from resonant X-ray photo-pumping. It will particularly contribute to a progress in high energy density science: pumped core hole states create X-ray transitions that can escape dense matter on a 10 fs-time scale without essential photoabsorption, thus providing a unique possibility to study matter under extreme conditions. In the first proof of principle experiment at the X-ray Free Electron Laser LCLS at SCLAC [Seely, J., Rosmej, F.B., Shepherd, R., Riley, D., Lee, R.W. Proposal to Perform the 1st High Energy Density Plasma Spectroscopic Pump/Probe Experiment", approved LCLS proposal L332 (2010)] we have successfully pumped inner-shell X-ray transitions in dense plasmas. The plasma was generated with a YAG laser irradiating solid Al and Mg targets attached to a rotating cylinder. In parallel to the optical laser beam, the XFEL was focused into the plasma plume at different delay times and pump energies. Pumped X-ray transitions have been observed with a spherically bent crystal spectrometer coupled to a Princeton CCD. By using this experimental configuration, we have simultaneously achieved extremely high spectral (λ/δλ ≈ 5000) and spatial resolution (δx≈70 μm) while maintaining high luminosity and a large spectral range covered (6.90 - 8.35 Å). By precisely measuring the variations in spectra emitted from plasma under action of XFEL radiation, we have successfully demonstrated transient X- ray pumping in a dense plasma.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The effects of an inductively rotating current were observed on low-frequency inductively coupled plasmas. The spatial distribution of electromagnetic fields was investigated in a cylindrical metallic chamber filled with dense plasma. The distribution of the magnetic field in plasma chamber was observed for rarefied and dense plasmas. The plasma was assumed as uniform in the electromagnetic fields. The results showed the plasma density increased with power and the electron density increased with pressure.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the present paper, the piston model of the coronal transient (see Hu. 1983a, b is discssed in detail, and the quantitative results of unsteady gasdynamics are applied to the coronal transient processes. The piston model explains the major features of the transient observations, such as the density profile, the geometric configuration, the kinetic process and the classifications of the coronal transient. Based on the idea of piston model, the bright feature and the dark feature of the transient are the gasdynamical response of the dense plasma ejecting into the corona, and associate with the compressed and rarefied flows, respectively. The quantitative results show that the density increment in the compressed region and the density decrement in the rarefied region are one order of magnitude larger and smaller, respectively, to the density in the quiet corona, it agrees quantitatively with the observations, and both the bright feature and dark feature are explained at the same time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

采用离子球模型,通过自洽求解Boltzmann方程和Poisson方程,得到类氦氖离子Kα线系的两条电偶极辐射光谱能量随等离子体环境的漂移.结果显示,Kα线系电偶极谱线随等离子体电子密度增大发生红移,红移量与等离子体电子密度有近似的正比关系;随着等离子体电子温度的降低,光谱红移对等离子体电子密度的敏感性增大。另外,所研究的两条谱线间的能量间隔随等离子体电子密度的增大而减小,减小量随等离子体电子密度的变化也呈现出近似的线性规律。值得注意的是,类氦氖Kα线系中两条电偶极谱线分别为互组合线与共振谱线,而其能量差

Relevância:

60.00% 60.00%

Publicador:

Resumo:

x射线激光探针干涉方法是诊断高温高密度激光等离子体电子密度等信息的重要工具.利用神光Ⅱ装置输出激光驱动的类镍-银x射线激光作为探针,成功地进行了马赫-曾德尔干涉法诊断实验,获得了清晰的包含等离子体信息的动态干涉条纹图像,并据此给出了待测C8H8等离子体临界面附近电子密度的空间分布。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A detailed investigation of plasma screening effects on atomic structure and transition properties are presented for He-like ions embedded in dense plasma environment. Multi-configuration Dirac-Fock calculations were carried out for these ions by considering a Debye-Huckel potential. A large-scale relativistic configuration-interaction method is adopted to calculate transition energies and transition probabilities and to allow for a systematic improvement of the calculations. Comparison of the presently calculated results with others, when available, is made.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A novel wide angle spectrometer has been implemented with a highly oriented pyrolytic graphite crystal coupled to an image plate. This spectrometer has allowed us to look at the energy resolved spectrum of scattered x rays from a dense plasma over a wide range of angles ( ~ 30°) in a single shot. Using this spectrometer we were able to observe the temporal evolution of the angular scatter cross section from a laser shocked foil. A spectrometer of this type may also be useful in investigations of x-ray line transfer from laser-plasmas experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We demonstrate experimentally that the relativistic electron flow in a dense plasma can be efficiently confined and guided in targets exhibiting a high-resistivity-core-low-resistivity-cladding structure analogous to optical waveguides. The relativistic electron beam is shown to be confined to an area of the order of the core diameter (50 mu m), which has the potential to substantially enhance the coupling efficiency of electrons to the compressed fusion fuel in the Fast Ignitor fusion in full-scale fusion experiments.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Detailed knowledge of fast electron energy transport following the interaction of ultrashort intense laser pulses is a key subject for fast ignition. This is a problem relevant to many areas of laser-plasma physics with particular importance to fast ignition and X-ray secondary source development, necessary for the development of large-scale facilities such as HiPER and ELI. Operating two orthogonal crystal spectrometers set at Bragg angles close to 45 degrees determines the X-ray s- and p-polarization ratio. From this ratio, it is possible to infer the velocity distribution function of the fast electron beam within the dense plasma. We report on results of polarization measurements at high density for sulphur and nickel buried layer targets in the high intensity range of 10(19) - 10(21) Wcm(-2). We observe at 45 degrees the Ly-alpha doublet using two sets of orthogonal highly-orientated pyrolytic graphite (HOPG) crystals set in 1(st) order for sulphur and 3(rd) order for nickel.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Plasma parcels are observed propagating from the Sun out to the large coronal heights monitored by the Heliospheric Imagers (HI) instruments onboard the NASA STEREO spacecraft during September 2007. The source region of these out-flowing parcels is found to corotate with the Sun and to be rooted near the western boundary of an equatorial coronal hole. These plasma enhancements evolve during their propagation through the HI cameras’ fields of view and only becoming fully developed in the outer camera field of view. We provide evidence that HI is observing the formation of a Corotating Interaction Region(CIR) where fast solar wind from the equatorial coronal hole is interacting with the slow solar wind of the streamer belt located on the western edge of that coronal hole. A dense plasma parcel is also observed near the footpoint of the observed CIR at a distance less than 0.1AU from the Sun where fast wind would have not had time to catch up slow wind. We suggest that this low-lying plasma enhancement is a plasma parcel which has been disconnected from a helmet streamer and subsequently becomes embedded inside the corotating interaction region.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We study nano-sized spherically symmetric plasma structures which are radial nonlinear oscillations of electrons in plasma. The effective interaction of these plasmoids via quantum exchange forces between ions is described. We calculate the energy of this interaction for the case of a dense plasma. The conditions when the exchange interaction is attractive are examined and it is shown that separate plasmoids can form a single object. The application of our results to the theoretical description of stable atmospheric plasma structures is considered. (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The accurate computation of radioactive opacities is needed in several research fields such as astrophysics, magnetic fusion or ICF target physics analysis, in which the radiation transport is an important feature to determine in detail. Radiation transport plays an important role in the transport of energy in dense plasma and it is strongly influenced by the variation of plasma opacity with density and temperature, as well as, photon energy. In this work we present some new features of the opacity code ATMED [1]. This code has been designed to compute the spectral radioactive opacity as well as the Rosseland and Planck means for single element and mixture plasmas. The model presented is fast, stable and reasonably accurate into its range of application and it can be a useful tool to simulate ICF experiments in plasma laboratory.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Radiotherapy (RT) has recently evolved with the emergence of heavy ion radiations or new fractionation schemes of photon therapy, which modify the dose rate of treatment delivery. The aim of the present study was then to evaluate the in vitro influence of a ultra-high dose rate comparing them with standard dose rate. In this regard, a radioresistant SK-MEL-28 cell line were irradiated with x-ray in order to have a total dose of 2 and 4 Gy, at two different dose rate. The ultra-high dose rate is a specific property of the dense plasma focus (DPF) device, which has pulsed operation and thus gives short and highly energetic pulses of multiple types of rays and particles, in this case, we focused our study on the influence of X-rays. While a low dose rate is obtained with conventional X-ray tube. In this study it results that a ultra-high dose rate enhances radiosensitivity of melanoma cells while reducing the adhesion, proliferation and migration ability of cells.