982 resultados para DNA content


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this research has been to study the molecular basis for chromosome aberration formation. Predicated on a variety of data, Mitomycin C (MMC)-induced DNA damage has been postulated to cause the formation of chromatid breaks (and gaps) by preventing the replication of regions of the genome prior to mitosis. The basic protocol for these experiments involved treating synchronized Hela cells in G(,1)-phase with a 1 (mu)g/ml dose of MMC for one hour. After removing the drug, cells were then allowed to progress to mitosis and were harvested for analysis by selective detachment. Utilizing the alkaline elution assay for DNA damage, evidence was obtained to support the conclusion that Hela cells can progress through S-phase into mitosis with intact DNA-DNA interstrand crosslinks. A higher level of crosslinking was observed in those cells remaining in interphase compared to those able to reach mitosis at the time of analysis. Dual radioisotope labeling experiments revealed that, at this dose, these crosslinks were associated to the same extent with both parental and newly replicated DNA. This finding was shown not to be the result of a two-step crosslink formation mechanism in which crosslink levels increase with time after drug treatment. It was also shown not to be an artefact of the double-labeling protocol. Using neutral CsCl density gradient ultracentrifugation of mitotic cells containing BrdU-labeled newly replicated DNA, control cells exhibited one major peak at a heavy/light density. However, MMC-treated cells had this same major peak at the heavy/light density, in addition to another minor peak at a density characteristic for light/light DNA. This was interpreted as indicating either: (1) that some parental DNA had not been replicated in the MMC treated sample or; (2) that a recombination repair mechanism was operational. To distinguish between these two possibilities, flow cytometric DNA fluorescence (i.e., DNA content) measurements of MMC-treated and control cells were made. These studies revealed that the mitotic cells that had been treated with MMC while in G(,1)-phase displayed a 10-20% lower DNA content than untreated control cells when measured under conditions that neutralize chromosome condensation effects (i.e., hypotonic treatment). These measurements were made under conditions in which the binding of the drug, MMC, was shown not to interfere with the stoichiometry of the ethidium bromide-mithramycin stain. At the chromosome level, differential staining techniques were used in an attempt to visualize unreplicated regions of the genome, but staining indicative of large unreplicated regions was not observed. These results are best explained by a recombinogenic mechanism. A model consistent with these results has been proposed.^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report here the functional characterization of an essential Saccharomyces cerevisiae gene, MPR1, coding for a regulatory proteasomal subunit for which the name Rpn11p has been proposed. For this study we made use of the mpr1-1 mutation that causes the following pleiotropic defects. At 24°C growth is delayed on glucose and impaired on glycerol, whereas no growth is seen at 36°C on either carbon source. Microscopic observation of cells growing on glucose at 24°C shows that most of them bear a large bud, whereas mitochondrial morphology is profoundly altered. A shift to the nonpermissive temperature produces aberrant elongated cell morphologies, whereas the nucleus fails to divide. Flow cytometry profiles after the shift to the nonpermissive temperature indicate overreplication of both nuclear and mitochondrial DNA. Consistently with the identification of Mpr1p with a proteasomal subunit, the mutation is complemented by the human POH1 proteasomal gene. Moreover, the mpr1-1 mutant grown to stationary phase accumulates ubiquitinated proteins. Localization of the Rpn11p/Mpr1p protein has been studied by green fluorescent protein fusion, and the fusion protein has been found to be mainly associated to cytoplasmic structures. For the first time, a proteasomal mutation has also revealed an associated mitochondrial phenotype. We actually showed, by the use of [rho°] cells derived from the mutant, that the increase in DNA content per cell is due in part to an increase in the amount of mitochondrial DNA. Moreover, microscopy of mpr1-1 cells grown on glucose showed that multiple punctate mitochondrial structures were present in place of the tubular network found in the wild-type strain. These data strongly suggest that mpr1-1 is a valuable tool with which to study the possible roles of proteasomal function in mitochondrial biogenesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Saccharomyces cerevisiae CDC9 gene encodes a DNA ligase protein that is targeted to both the nucleus and the mitochondria. While nuclear Cdc9p is known to play an essential role in nuclear DNA replication and repair, its role in mitochondrial DNA dynamics has not been defined. It is also unclear whether additional DNA ligase proteins are present in yeast mitochondria. To address these issues, mitochondrial DNA ligase function in S.cerevisiae was analyzed. Biochemical analysis of mitochondrial protein extracts supported the conclusion that Cdc9p was the sole DNA ligase protein present in this organelle. Inactivation of mitochondrial Cdc9p function led to a rapid decline in cellular mitochondrial DNA content in both dividing and stationary yeast cultures. In contrast, there was no apparent defect in mitochondrial DNA dynamics in a yeast strain deficient in Dnl4p (Δdnl4). The Escherichia coli EcoRI endonuclease was targeted to yeast mitochondria. Transient expression of this recombinant EcoRI endonuclease led to the formation of mitochondrial DNA double-strand breaks. While wild-type and Δdnl4 yeast were able to rapidly recover from this mitochondrial DNA damage, clones deficient in mitochondrial Cdc9p were not. These results support the conclusion that yeast rely upon a single DNA ligase, Cdc9p, to carry out mitochondrial DNA replication and recovery from both spontaneous and induced mitochondrial DNA damage.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the fission yeast Schizosaccharomyces pombe the cdc18'+gene is required both for initiation of DNA replication and for coupling mitosis to the completion of S phase. Cells lacking Cdc18 fail to enter S phase but still undergo nuclear division. Expression of cdc18+ is sufficient to drive a G1-arrested cdc10ts mutant into the S phase of the cell cycle, indicating that cdc18+ represents a critical link between passage through START and the initiation of DNA replication. Here we show that Cdcl8 is a highly unstable protein that is expressed only once per cell cycle at the boundary between GI and S phase. De novo synthesis of Cdc18 is required before, but not after, the initiation of DNA replication, indicating that Cdc18 function is not necessary once the initiation event has occurred. Overproduction of the protein results in an accumulation of cells with DNA content of greater than 2C and delays mitosis, suggesting that Cdc18 is sufficient to cause reinitiation of DNA replication within a given cell cycle. Our data indicate that the synthesis of Cdc18 protein is a critical rate-limiting step in the initiation of DNA replication during each cell cycle. The extreme lability of the protein may contribute to the prevention of reinitiation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Endosperm development in Zea mays is characterized by a period of intense mitotic activity followed by a period in which mitosis is essentially eliminated and the cell cycle becomes one of alternating S and G phases, leading to endoreduplication of the nuclear DNA. The endosperm represents a significant contribution to the grain yield of maize; thus, methods that facilitate the study of cellular kinetics may be useful in discerning cellular and molecular components of grain yield. Two mathematical models have been developed to describe the kinetics of endosperm growth. The first describes the kinetics of mitosis during endosperm development; the second describes the kinetics of DNA endoreduplication during endosperm development. The mitotic model is a modification of standard growth curves. The endoreduplication model is composed of six differential equations that represent the progression of nuclei from one DNA content to another during the endoreduplication process. Total nuclei number per endosperm and the number of 3C, 6C, 12C, 24C, 48C, and 96C nuclei per endosperm (C is the haploid DNA content per nucleus) for inbred W64A from 8 to 18 days after pollination were determined by flow cytometry. The results indicate that the change in number of nuclei expressed as a function of the number of days after pollination is the same from one yearly crop to another. These data were used in the model to determine the endosperm growth rate, the maximum nuclei number per endosperm, and transition rates from one C value to the next higher C value. The kinetics of endosperm development are reasonably well represented by the models. Thus, the models provide a means to quantify the complex pattern of endosperm development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Plasmid DNA pRc/CMV HBS encoding the S (small) region of hepatitis B surface antigen (HBsAg) was incorporated by the dehydration-rehydration method into Lipodine™ liposomes composed of 16 μmoles phosphatidylcholine (PC) or distearoyl phosphatidylcholine (DSPC), 8 μmoles of (dioleoyl phosphatidylethanolamine (DOPE) or cholesterol and 4 μmoles of the cationic lipid 1,2-dioleoyl-3-(trimethylammonium propane (DOTAP) (molar ratios 1:0.5:0.25). Incorporation efficiency was high (89-93% of the amount of DNA used) in all four formulations tested and incorporated DNA was shown to be resistant to displacement in the presence of the competing anionic sodium dodecyl sulphate molecules. This is consistent with the notion that most of the DNA is incorporated within the multilamellar vesicles structure rather than being vesicle surface-complexed. Stability studies performed in simulated intestinal media also demonstrated that dehydration-rehydration vesicles (DRV) incorporating DNA (DRV(DNA)) were able to retain significantly more of their DNA content compared to DNA complexed with preformed small unilamellar vesicles (SUV-DNA) of the same composition. Moreover, after 4h incubation in the media, DNA loss for DSPC DRV(DNA) was only minimal, suggesting this to be the most stable formulation. Oral (intragastric) liposome-mediated DNA immunisation studies employing a variety of DRV(DNA) formulations as well as naked DNA revealed that secreted IgA responses against the encoded HBsAg were (as early as three weeks after the first dose) substantially higher after dosing with 100 μg liposome-entrapped DNA compared to naked DNA. Throughout the fourteen week investigation, IgA responses in mice were consistently higher with the DSPC DRV(DNA) liposomes compared to naked DNA and correlated well with their improved DNA retention when exposed to model intestinal fluids. To investigate gene expression after oral (intragastric) administration, mice were given 100 μg of naked or DSPC DRV liposome-entrapped plasmid DNA expressing the enhanced green fluorescent protein (pCMV.EGFP). Expression of the gene, in terms of fluorescence intensity in the draining mesenteric lymph nodes, was much greater in mice dosed with liposomal DNA than in animals dosed with the naked DNA. These results suggest that DSPC DRV liposomes containing DNA (Lipodine™) may be a useful system for the oral delivery of DNA vaccines.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Seafood products fraud, the misrepresentation of them, have been discovered all around the world in different forms as false labeling, species substitution, short-weighting or over glazing in order to hide the correct identity, origin or weight of the seafood products. Due to the value of seafood products such as canned tuna, swordfish or grouper, these species are the subject of the commercial fraud is mainly there placement of valuable species with other little or no value species. A similar situation occurs with the shelled shrimp or shellfish that are reduced into pieces for the commercialization. Food fraud by species substitution is an emerging risk given the increasingly global food supply chain and the potential food safety issues. Economic food fraud is committed when food is deliberately placed on the market, for financial gain deceiving consumers (Woolfe, M. & Primrose, S. 2004). As a result of the increased demand and the globalization of the seafood supply, more fish species are encountered in the market. In this scenary, it becomes essential to unequivocally identify the species. The traditional taxonomy, based primarily on identification keys of species, has shown a number of limitations in the use of the distinctive features in many animal taxa, amplified when fish, crustacean or shellfish are commercially transformed. Many fish species show a similar texture, thus the certification of fish products is particularly important when fishes have undergone procedures which affect the overall anatomical structure, such as heading, slicing or filleting (Marko et al., 2004). The absence of morphological traits, a main characteristic usually used to identify animal species, represents a challenge and molecular identification methods are required. Among them, DNA-based methods are more frequently employed for food authentication (Lockley & Bardsley, 2000). In addition to food authentication and traceability, studies of taxonomy, population and conservation genetics as well as analysis of dietary habits and prey selection, also rely on genetic analyses including the DNA barcoding technology (Arroyave & Stiassny, 2014; Galimberti et al., 2013; Mafra, Ferreira, & Oliveira, 2008; Nicolé et al., 2012; Rasmussen & Morrissey, 2008), consisting in PCR amplification and sequencing of a COI mitochondrial gene specific region. The system proposed by P. Hebert et al. (2003) locates inside the mitochondrial COI gene (cytochrome oxidase subunit I) the bioidentification system useful in taxonomic identification of species (Lo Brutto et al., 2007). The COI region, used for genetic identification - DNA barcode - is short enough to allow, with the current technology, to decode sequence (the pairs of nucleotide bases) in a single step. Despite, this region only represents a tiny fraction of the mitochondrial DNA content in each cell, the COI region has sufficient variability to distinguish the majority of species among them (Biondo et al. 2016). This technique has been already employed to address the demand of assessing the actual identity and/or provenance of marketed products, as well as to unmask mislabelling and fraudulent substitutions, difficult to detect especially in manufactured seafood (Barbuto et al., 2010; Galimberti et al., 2013; Filonzi, Chiesa, Vaghi, & Nonnis Marzano, 2010). Nowadays,the research concerns the use of genetic markers to identify not only the species and/or varieties of fish, but also to identify molecular characters able to trace the origin and to provide an effective control tool forproducers and consumers as a supply chain in agreementwith local regulations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O presente estudo objetivou avaliar o efeito do desmame precoce sobre a composição corporal e sobre parâmetros indicativos do estado nutricional de camundongos. O grupo experimental consistiu de camundongos Swiss Webster, machos, desmamados precocemente (14º dia de vida) e alimentados com ração apropriada para roedores em crescimento até o 21º dia pós-natal (grupo DESM). O grupo controle consistiu de camundongos amamentados até o 21º dia pós-natal (grupo CON). Todos os animais foram sacrificados no 21º dia de vida. O grupo DESM apresentou redução da concentração e conteúdo hepático e muscular de proteínas, da concentração cerebral de proteínas, da concentração e conteúdo cerebral de DNA e da razão proteína/RNA hepática e muscular (p<0,05). Quanto à composição corporal, o grupo DESM apresentou maior conteúdo de umidade, maior percentual de umidade e lipídios e menor conteúdo e percentual de cinzas e proteína na carcaça (p<0,05). Os resultados indicam que o desmame precoce acarreta em prejuízo à composição corporal e a parâmetros indicativos do estado nutricional, o que pode estar relacionado ao retardo do processo de maturação química. Os dados do presente estudo podem contribuir para o entendimento da influência da alimentação com fórmulas infantis sobre a composição corporal e sobre o estado nutricional.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Adipose tissue-derived stem cells (ASCs) are among the more attractive adult stem cell options for potential therapeutic applications. Here, we studied and compared the basic biological characteristics of ASCs isolated from humans (hASCs) and mice (mASCs) and maintained in identical culture conditions, which must be examined prior to considering further potential clinical applications. hASCs and mASCs were compared for immunophenotype, differentiation potential, cell growth characteristics, senescence, nuclear morphology, and DNA content. Although both strains of ASCs displayed a similar immunophenotype, the percentage of CD73(+) cells was markedly lower and CD31(+) was higher in mASC than in hASC cultures. The mean population doubling time was 98.08 +/- 6.15 h for hASCs and 52.58 +/- 3.74 h for mASCs. The frequency of nuclear aberrations was noticeably lower in hASCs than in mASCs regardless of the passage number. Moreover, as the cells went through several in vitro passages, mASCs showed changes in DNA content and cell cycle kinetics (frequency of hypodiploid, G0/G1, G2/M, and hyperdiploid cells), whereas all of these parameters remained constant in hASCs. Collectively, these results suggest that mASCs display higher proliferative capacity and are more unstable than hASCs in long-term cultures. These results underscore the need to consider specificities among model systems that may influence outcomes when designing potential human applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genetic instability is frequent in human cancer. Unscheduled tetraploidization can trigger cell transformation and tumorigenesis. We made a cytogenetic analysis by Giemsa-trypsin banding of a stage I, biphasic Wilms tumor diagnosed in a 10-month-old male. An evident karyotypic heterogeneity was found. Four different subclones of tumor cells were observed, with DNA content varying from diploid to near-tetraploid complements. The genetic events involved in the acquisition of aneuploidy in Wilms tumor remain unclear. We hypothesize that initial tetraploidization caused aberrant cell division, leading to abnormal chromosomal segregation, cell transformation and tumorigenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The Trypanosoma cruzi genome was sequenced from a hybrid strain (CL Brener). However, high allelic variation and the repetitive nature of the genome have prevented the complete linear sequence of chromosomes being determined. Determining the full complement of chromosomes and establishing syntenic groups will be important in defining the structure of T. cruzi chromosomes. A large amount of information is now available for T. cruzi and Trypanosoma brucei, providing the opportunity to compare and describe the overall patterns of chromosomal evolution in these parasites. Methodology/Principal Findings: The genome sizes, repetitive DNA contents, and the numbers and sizes of chromosomes of nine strains of T. cruzi from four lineages (TcI, TcII, TcV and TcVI) were determined. The genome of the TcI group was statistically smaller than other lineages, with the exception of the TcI isolate Tc1161 (Jose-IMT). Satellite DNA content was correlated with genome size for all isolates, but this was not accompanied by simultaneous amplification of retrotransposons. Regardless of chromosomal polymorphism, large syntenic groups are conserved among T. cruzi lineages. Duplicated chromosome-sized regions were identified and could be retained as paralogous loci, increasing the dosage of several genes. By comparing T. cruzi and T. brucei chromosomes, homologous chromosomal regions in T. brucei were identified. Chromosomes Tb9 and Tb11 of T. brucei share regions of syntenic homology with three and six T. cruzi chromosomal bands, respectively. Conclusions: Despite genome size variation and karyotype polymorphism, T. cruzi lineages exhibit conservation of chromosome structure. Several syntenic groups are conserved among all isolates analyzed in this study. The syntenic regions are larger than expected if rearrangements occur randomly, suggesting that they are conserved owing to positive selection. Mapping of the syntenic regions on T. cruzi chromosomal bands provides evidence for the occurrence of fusion and split events involving T. brucei and T. cruzi chromosomes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oral squamous cell carcinoma (OSCC) is associated with high morbidity and mortality which is due, at least in part, to late detection. Precancerous and cancerous oral lesions may mimic any number of benign oral lesions, and as such may be left without investigation and treatment until they are well advanced. Over the past several years there has been renewed interest in oral cytology as an adjuvant clinical tool in the investigation of oral mucosal lesions. The purpose of the present study was to compare the usefulness of ploidy analysis after Feulgen stained cytological thin-prep specimens with traditional incisional biopsy and routine histopathological examination for the assessment of the pre-malignant potential of oral mucosal lesions. An analysis of the cytological specimens was undertaken with virtual microscopy which allowed for rapid and thorough analysis of the complete cytological specimen. 100 healthy individuals between 30 and 70 years of age, who were non-smokers, non-drinkers and not taking any medication, had cytological specimens collected from both the buccal mucosa and lateral margin of tongue to establish normal cytology parameters within a control population. Patients with a presumptive clinical diagnosis of lichen planus, leukoplakia or OSCC had lesional cytological samples taken prior to their diagnostic biopsy. Standardised thin preparations were prepared and each specimen stained by both Feuglen and Papanicolau methods. High speed scanning of the complete slide at 40X magnification was undertaken using the Aperio Scanscope TM and the green channel of the resultant image was analysed after threshold segmentation to isolate only nuclei and the integrated optical density of each nucleus taken as a gross measure of the DNA content (ploidy). Preliminary results reveal that ploidy assessment of oral cytology holds great promise as an adjunctive prognostic factor in the analysis of the malignant potential of oral mucosal lesions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To investigate the possible role of chromatin texture parameters, nuclear morphology, DNA ploidy and clinical functional status in discriminating benign from malignant adrenocortical tumors (ACT). Patients and Methods: Forty-eight cases of clinically benign (n=40) and clinically malignant (n=8) ACT with a minimum of 5-years` follow-up were evaluated for chromatin texture parameters (run length, standard deviation, configurable run length, valley, slope, peak and other 21 Markovian features that describe the distribution of the chromatin in the nucleus), nuclear morphology (nuclear area, nuclear perimeter, nuclear maximum and minumum diameter, nuclear shape), and DNA ploidy. Nuclear parameters were evaluated in Feulgen-stained 5 mu m paraffin-sections analyzed using a CAS 200 image analyzer. Results: Since ACTs present different biological features in children and adults, patients were divided into two groups: children (<= 15 years) and adults (>15 years). In the group of children DNA ploidy presented a marginal significance (p=0.05) in discriminating ACTs. None of the parameters discriminated between malignant and benign ACT in the adult group. Conclusion: ACTs are uncommon and definitive predictive criteria for malignancy remain uncertain, particularly in children. Our data point to DNA content evaluated by image analysis as a new candidate tool for this challenging task. Texture image analysis did not help to differentiate malignant from benign adrenal cortical tumors in children and adults.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study of viral-based processes is hampered by (a) their complex, transient nature, (b) the instability of products, and (c) the lack of accurate diagnostic assays. Here, we describe the use of real-time quantitative polymerase chain reaction to characterize baculoviral infection. Baculovirus DNA content doubles every 1.7 h from 6 h post-infection until replication is halted at the onset of budding. No dynamic equilibrium exists between replication and release, and the kinetics are independent of the cell density at the time of infection. No more than 16% of the intracellular virus copies bud from the cell. (C) 2002 John Wiley & Sons, Inc. Biotechnol Bioeng 77: 476-480, 2002; DOI 10.1002/bit.10126.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A mitose é o evento celular, através do qual uma células transmite uma cópias do seu DNA às células filhas. Este processo é mediado pelo fuso mitótico, o qual consiste numa rede bipolar microtubulos. A dinâmica dos microtubulos é regulada por proteínas associadas a estes (MAPs – Microtubule-Associated Proteins), tais como as proteínas associadas às extremidades positivas dos microtubulos (+TIPs – Plus-ends Tracking proteins). As proteínas associadas às CLIPs (CLASPs – CLIP-associated proteins) pertencem a esta família e estão altamente conservadas nos eucariotas. Estas interagem com os microtubulos regulando o fuso mitótico, a segregação dos cromossomas e o comportamento dos microtubulos ao nível do cinetocoro. Assim, as CLASPs têm sido descritas como essenciais à manutenção da integridade genética durante a divisão celular. Um modelo animal knockout para o gene Clasp1 é uma ferramenta indispensável à descoberta do papel da CLASP1 a nível fisiológico. Nos animais knockout foi observado um fenótipo letal, no qual 100% dos recém-nascidos morreram poucos minutos após o nascimento, no decurso de falência respiratória. Após análise histopatológica, observamos que os pulmões dos animais knockout apresentam um atraso no desenvolvimento. Porém, a análise da expressão de marcadores de diferenciação celular, mostrou que os pneumócitos tipo I e II estão presente e diferenciados nos animais knockout aquando do seu nascimento. No entanto, um defeito primário a nível pulmonar ainda não pode ser excluído. Níveis elevados de glicogénio no parênquima alveolar dos animais knockout sugerem imaturidade pulmonar ou deficiente produção do líquido surfactante. Adicionalmente, ainda não está esclarecido de que forma pode este atraso explicar a letalidade observada nos recémnascidos knockout. Verificamos também que expressão de CLASP1 é transiente ao longo do desenvolvimento, sendo particularmente elevada no cérebro, o que pode explicar o seu papel já descrito na biologia dos neurónios. A CLASP1 é ubiquamente expressa em mamíferos adultos, o que sugere que esta proteína é também importante em tecidos diferenciados. Nesta fase, o significado biológico da CLASP1 em mamíferos ainda não foi descortinado. No entanto, nenhum animal knockout para Clasp1 foi capaz de sobreviver ex uterus, o que sugere um papel fundamental desta proteína na fase final do desenvolvimento dos mamíferos.