49 resultados para CuCl
Resumo:
A square-planar compound [Cu(pyrimol)Cl] (pyrimol = 4-methyl-2-N-(2-pyridylmethylene)aminophenolate) abbreviated as CuL–Cl) is described as a biomimetic model of the enzyme galactose oxidase (GOase). This copper(II) compound is capable of stoichiometric aerobic oxidation of activated primary alcohols in acetonitrile/water to the corresponding aldehydes. It can be obtained either from Hpyrimol (HL) or its reduced/hydrogenated form Hpyramol (4-methyl-2-N-(2-pyridylmethyl)aminophenol; H2L) readily converting to pyrimol (L-) on coordination to the copper(II) ion. Crystalline CuL–Cl and its bromide derivative exhibit a perfect square-planar geometry with Cu–O(phenolate) bond lengths of 1.944(2) and 1.938(2) Å. The cyclic voltammogram of CuL–Cl exhibits an irreversible anodic wave at +0.50 and +0.57 V versus ferrocene/ferrocenium (Fc/Fc+) in dry dichloromethane and acetonitrile, respectively, corresponding to oxidation of the phenolate ligand to the corresponding phenoxyl radical. In the strongly donating acetonitrile the oxidation path involves reversible solvent coordination at the Cu(II) centre. The presence of the dominant CuII–L. chromophore in the electrochemically and chemically oxidised species is evident from a new fairly intense electronic absorption at 400–480 nm ascribed to a several electronic transitions having a mixed pi-pi(L.) intraligand and Cu–Cl -> L. charge transfer character. The EPR signal of CuL–Cl disappears on oxidation due to strong intramolecular antiferromagnetic exchange coupling between the phenoxyl radical ligand (L.) and the copper(II) centre, giving rise to a singlet ground state (S = 0). The key step in the mechanism of the primary alcohol oxidation by CuL–Cl is probably the alpha-hydrogen abstraction from the equatorially bound alcoholate by the phenoxyl moiety in the oxidised pyrimol ligand, Cu–L., through a five-membered cyclic transition state.
Resumo:
This a study on the achievement of alumina membranes by the method of anodizing. From this method got up a layer of aluminum oxide on the anodic metal, who presented the basic properties necessary for the application as a support for the production and acquisition of nanomaterials, such as porosity nano and resistance to high temperature, and other properties, as resistance to corrosion, and chemical, high ranking of the structure and pore size of the pores. The latter, ranging from 10 to 100nm depended on the electrolyte used, which in this study was the H2SO4. To remove all remaining aluminum, it is a bath of dissolution with HCl and CuCl where the residual aluminum has been withdrawn, and the deep pores were opened after chemical treatment with NaOH. After the dissolution, the membranes were calcined at temperatures of 300, 600 and 900° C, and sintered at temperatures of 1200 and 1300º C to win mechanical strength, porosity and observe the desired crystallization. Then went through analyses of composition through X-ray diffraction and morphology of the microstructure through a scanning electron microscope. The method was effective for obtaining alumine membranes applied in the processes of production of materials in nano
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The present investigation reports the synthesis, characterization, and adsorption properties of a new nanomaterial based on organomodified silsesquioxane nanocages. The adsorption isotherms for CuCl,, CoCl2, ZnCl2, NiCl2, and FeCl3 from ethanol solutions were performed by using the batchwise method. The equilibrium condition is reached very quickly (3 min), indicating that the adsorption sites are well exposed. The results obtained in the flow experiments, showed a recovery of ca. 100% of the metal ions adsorbed in a column packed with 2 g of the nanomaterial, using 5 mL of 1.0 mol L-1 HCl solution as eluent. The sorption-desorption of the metal ions made possible the development of a method for preconcentration and determination of metal ions at trace level in commercial ethanol, used as fuel for car engines. The values determined by recommended method for plants 1, 2, and 3 indicated an amount of copper of 51, 60, and 78 mu g L-1, and of iron of 2, 15, and 13 mu g L-1, respectively. These values are very close to those determined by conventional analytical methods. Thus, these similar values demonstrated the accuracy of the determination by recommended method.
Synthesis, characterization, and investigation of the thermal behavior of Cu(II) pyrazolyl complexes
Resumo:
This work reports the synthesis, characterization, and thermal behavior of three complexes of copper (II): [CuCl(2)(HPz)(4)] (1), [CuCl(2)(HdmPz)(4)] (2), and [CuCl(2)(HIPz)(4)] (3) (HPz = pyrazole; HdmPz = 3,5-dimethylpyrazole; HIPz = 4-iodopyrazole). The compounds were characterized by elemental analysis, infrared spectroscopy, and UV-Vis measurements. The thermal study of the compounds showed that the ligands are eliminated in 2-4 stages, yielding CuO as final residue.
Resumo:
M(CO)(4)(N-N)] reacts with CuCl to give new heterobimetallic metal carbonyls of the type [M(CO)(4)(N-N)(CuCl)], M = W, Mo; N-N = 2,2'-bipyridine (bipy), 1,10-phenanthroline (phen). Reactions of [M(CO)(4)(N-N)(CuCl)] with NaSCN produced the series of complexes of general formula [M(CO)(4)(N-N)(CuSCN)]. The i.r. spectral of all the bimetallic carbonyls exhibited the general four m ( CO) band patterns of the precursors. The u.v.-vis. spectral data for precursors and products showed bands associated with pi --> pi* (nitrogen ligands), d-->d (intrametal), as well as MLCT d-->pi* (nitrogen ligands) and MLCT d --> pi*(CO) transitions. The [M(CO)(4)(N-N)(CuX)] (X = Cl, SCN) emission spectra showed only one band associated with the MLCT transition. The t.g. curves revealed a stepwise loss of CO groups. The initial decomposition temperatures of the [M(CO)(4)(N-N)(CuX)] series suggest that the bimetallic compounds are indeed thermally less stable than their precursors, and the X- ray data showed the formation of MO3, CuMO4, Cu2O and CuO as final decomposition products, M = W, Mo. The spectroscopic data suggests that the heterobimetallic compounds are polymeric.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Química - IQ
Resumo:
Four new heterobimetallic metal carbonyls were synthesized by the reaction of [W(CO)4(bipy)] (1) with copper(I) compounds leading to species with the general formula [W(CO)4(bipy)(CuX)] (X = Cl, N3, ClO4, BF4) (2-5). The metal carbonyl compounds were characterized by elemental analysis, infrared and UV -visible electronic spectroscopy and thermogravimetric analysis. The IR data for 2-5 show carbonyl stretching band patterns similar to compound 1 ; ie they exhibit the same number of bands. The UV - vis results show a dissociation reaction generating the starting compound 1 and CuX as consequence of a weak interaction between 1 and CuX. Thermal decomposition mechanisms as well as the thermal stability are influenced by the CuX fragments. The thermal stability decreases in the order [W(CO)4(bipy)] > [W(CO)4(bipy)(CuCl)] > [W(CO)4(bipy) (CuBF4)]. The X-ray results show the formation of WO3, CuWO4, Cu2O and CuO as final decomposition products.
Resumo:
The sol-gel process is a technique based on the hydrolysis and polycondensation of metal alkoxides have been investigated as an alternative for the preparation of vitreous or glassceramic materials, for allowing the obtaining of high-purity materials at low temperatures, and to obtain hybrid materials with different compositions. When ORMOSILs are doped with nanoparticles, are called nanocomposites, and its functionality arises when electrons confined in scale three-dimensional structures near zero are excited. In principle, such materials exhibit discrete energy level, with peaks in the absorption spectrum. Therefore, the glasses doped semiconductor nanocrystals are important candidates for the preparation of optical filters with sharp cut-off, and are being exploited commercially for coloring glasses. This study evaluates the optical properties presented by hybrid films of silica doped with copper nanoparticles. The matrix was prepared using the alkoxides 3-glycidoxypropyltrimethoxysilane (GPTS) and tetraethylorthosilicate (TEOS) doped with Cu2O and hydrolyzed under reflux conditions in two different acidic conditions (HCl and HBr). After thermal treatment at temperatures between 100 °C and 170 °C and/or under the action of commercial black light radiation, CuCl and CuBr present in the hybrid film are transformed into nanoparticles of CuCl or CuBr. The UV-VIS absorption identified the absorption bands, and its variation
Resumo:
Nuclear magnetic resonance (NMR) is a tool used to probe the physical and chemical environments of specific atoms in molecules. This research explored small molecule analogues to biological materials to determine NMR parameters using ab initio computations, comparing the results with solid-state NMR measurements. Models, such as dimethyl phosphate (DMP) for oligonucleotides or CuCl for the active site of the protein azurin, represented computationally unwieldy macromolecules. 31P chemical shielding tensors were calculated for DMP as a function of torsion angles, as well as for the phosphate salts, ammonium dihydrogen phosphate (ADHP), diammonium hydrogen phosphate, and magnesium dihydrogen phosphate. The computational DMP work indicated a problem with the current standard 31P reference of 85% H3PO4(aq.). Comparison of the calculations and experimental spectra for the phosphate salts indicated ADHP might be a preferable alternative as a solid state NMR reference for 31P. Experimental work included magic angle spinning experiments on powder samples using the UNL chemistry department’s Bruker Avance 600 MHz NMR to collect data to determine chemical shielding anisotropies. For the quadrupolar nuclei of copper and scandium, the electric field gradient was calculated in diatomic univalent metal halides, allowing determination of the minimal level of theory necessary to compute NMR parameters for these nuclei.
Resumo:
The wide variety of molecular architectures used in sensors and biosensors and the large amount of data generated with some principles of detection have motivated the use of computational methods, such as information visualization techniques, not only to handle the data but also to optimize sensing performance. In this study, we combine projection techniques with micro-Raman scattering and atomic force microscopy (AFM) to address critical issues related to practical applications of electronic tongues (e-tongues) based on impedance spectroscopy. Experimentally, we used sensing units made with thin films of a perylene derivative (AzoPTCD acronym), coating Pt interdigitated electrodes, to detect CuCl(2) (Cu(2+)), methylene blue (MB), and saccharose in aqueous solutions, which were selected due to their distinct molecular sizes and ionic character in solution. The AzoPTCD films were deposited from monolayers to 120 nm via Langmuir-Blodgett (LB) and physical vapor deposition (PVD) techniques. Because the main aspects investigated were how the interdigitated electrodes are coated by thin films (architecture on e-tongue) and the film thickness, we decided to employ the same material for all sensing units. The capacitance data were projected into a 2D plot using the force scheme method, from which we could infer that at low analyte concentrations the electrical response of the units was determined by the film thickness. Concentrations at 10 mu M or higher could be distinguished with thinner films tens of nanometers at most-which could withstand the impedance measurements, and without causing significant changes in the Raman signal for the AzoPTCD film-forming molecules. The sensitivity to the analytes appears to be related to adsorption on the film surface, as inferred from Raman spectroscopy data using MB as analyte and from the multidimensional projections. The analysis of the results presented may serve as a new route to select materials and molecular architectures for novel sensors and biosensors, in addition to suggesting ways to unravel the mechanisms behind the high sensitivity obtained in various sensors.
Resumo:
The oxidation and reduction of copper in air-saturated seawater and NaCl solutions has been measured as a function of pH (7.17-8.49), temperature (5-35ºC) and ionic strength (0.1-0.7 M). The oxidation rate was fitted to an equation for sodium chloride and seawater valid at different pH and media conditions: k . . pH- . /T- . I . I k . . pH- . /T- . I . I (sw) (NaCl) log 5 036 0 514 1764 915 1101 0 233 log 5 221 0 609 1915 433 1818 0 408 = + + = + + The reduction of Cu(II) was studied in both media for different initial concentration of copper(II). When the initial Cu(II) concentration was 200 nM, the copper(I) produced was 20% and 9% for NaCl and seawater, respectively. Considering the copper(I) reduced from Cu(II), the speciation and the contribution of these species to the kinetic process was studied. The Cu(I) speciation is dominated by the CuCl2 - species. On the other hand, the neutral chloride CuCl species dominates the Cu(I) oxidation in the range 0.1 M to 0.7 M chloride concentrations.
Resumo:
A technique of zooplankton net sampling at night in the Kandalaksha and Dvinskii Bays and during the full tide in the Onezhskii Bay of the White Sea allowed us to obtain "clean" samples without considerable admixtures of terrigenous particulates. Absence of elements-indicators of the terrigenous particulates (Al, Ti, and Zr) in the EDX spectra allows to conclude that ash composition of tested samples is defined by constitutional elements comprising organic matter and integument (chitin, shells) of plankton organisms. A quantitative assessment of accumulation of ca. 40 chemical elements by zooplankton based on a complex of modern physical methods of analysis is presented. Values of the coefficient of the biological accumulation of the elements (Kb) calculated for organic matter and the enrichment factors (EF) relative to Clarke concentrations in shale are in general determined by mobility of the chemical elements in aqueous solution, which is confirmed by calculated chemical speciation of the elements in the inorganic subsystem of surface waters of Onezhskii Bay.