Theoretical and Experimental Studies in Nuclear Magnetic Resonance


Autoria(s): Roehrich, Adrienne M.
Data(s)

01/08/2010

Resumo

Nuclear magnetic resonance (NMR) is a tool used to probe the physical and chemical environments of specific atoms in molecules. This research explored small molecule analogues to biological materials to determine NMR parameters using ab initio computations, comparing the results with solid-state NMR measurements. Models, such as dimethyl phosphate (DMP) for oligonucleotides or CuCl for the active site of the protein azurin, represented computationally unwieldy macromolecules. 31P chemical shielding tensors were calculated for DMP as a function of torsion angles, as well as for the phosphate salts, ammonium dihydrogen phosphate (ADHP), diammonium hydrogen phosphate, and magnesium dihydrogen phosphate. The computational DMP work indicated a problem with the current standard 31P reference of 85% H3PO4(aq.). Comparison of the calculations and experimental spectra for the phosphate salts indicated ADHP might be a preferable alternative as a solid state NMR reference for 31P. Experimental work included magic angle spinning experiments on powder samples using the UNL chemistry department’s Bruker Avance 600 MHz NMR to collect data to determine chemical shielding anisotropies. For the quadrupolar nuclei of copper and scandium, the electric field gradient was calculated in diatomic univalent metal halides, allowing determination of the minimal level of theory necessary to compute NMR parameters for these nuclei.

Formato

application/pdf

Identificador

http://digitalcommons.unl.edu/chemistrydiss/11

http://digitalcommons.unl.edu/cgi/viewcontent.cgi?article=1011&context=chemistrydiss

Publicador

DigitalCommons@University of Nebraska - Lincoln

Fonte

Student Research Projects, Dissertations, and Theses - Chemistry Department

Palavras-Chave #solid-state NMR #phosphorus #copper #magic angle spinning #Chemistry #Physical Chemistry
Tipo

text