989 resultados para Container cargo
Resumo:
Abstract
Resumo:
Abstract
Resumo:
Abstract
Resumo:
OBJECTIVE: Smuggling dissolved drugs, especially cocaine, in bottled liquids is an ongoing problem at borders. Common fluoroscopy of packages at the border cannot detect contaminated liquids. The objective of our study was to develop an MDCT screening method to detect cocaine-containing vessels that are hidden between uncontaminated ones in a shipment. MATERIALS AND METHODS: Studies were performed on three wine bottles containing cocaine solutions that were confiscated at the Swiss border. Reference values were obtained by scans of different sorts of commercially available wine and aqueous solutions of dissolved sugar. All bottles were scanned using MDCT, and data evaluation was performed by measuring the mean peak of Hounsfield units. To verify the method, simulated testing was performed. RESULTS: Using measurements of the mean peak of Hounsfield units enables the detection of dissolved cocaine in wine bottles in a noninvasive and rapid fashion. Increasing opacity corresponds well with the concentration of dissolved cocaine. Simulated testing showed that it is possible to distinguish between cocaine-contaminated and uncontaminated wine bottles. CONCLUSION: The described method is an efficacious screening method to detect cocaine-contaminated bottles that are hidden between untreated bottles in cargo. The noninvasive examination of cargo allows a questionable delivery to be tracked without arousing the suspicion of the smugglers.
Resumo:
Abstract
Resumo:
Ca(2+) import into the lumen of the trans-Golgi network (TGN) by the secretory pathway calcium ATPase1 (SPCA1) is required for the sorting of secretory cargo. How is Ca(2+) retained in the lumen of the Golgi, and what is its role in cargo sorting? We show here that a soluble, lumenal Golgi resident protein, Cab45, is required for SPCA1-dependent Ca(2+) import into the TGN; it binds secretory cargo in a Ca(2+)-dependent reaction and is required for its sorting at the TGN.
Resumo:
Container Handling Equipment Monitoring System (CHEMS) is a system developed by Savcor One Oy. CHEMS measures important information for container ports performance and produces performance indicators. The aim of this thesis was to clarify performance measurement contents to Savcor and to develop, as an example, performance measures to Steveco Oy's container operations. The theoretical part of the thesis clarifies performance measurement and which of its components are important to container port. Performance measurement and measures are presented from the operational level's point of view, in which CHEMS is planned to aim. The theory of development process of performance measures is introduced at the end of the theoretical part. To make sure that performance measures are efficiently used, Steveco Oy's performance measures are developed in cooperation with the users. The measurement in operational level is continuous and the results must be reacted asquickly as possible. CHEMS is very suitable to continuous measurement and to produce real time-measures of container operations which are hard to get any otherway.
Resumo:
Tutkimuksen tavoitteena oli löytää yritysten välisten tutkimus- ja kehityshankkeiden valintaan liittyviä kriittisiä tekijöitä ja luoda T&K-verkostojen analysointiin soveltuva malli, jonka avulla tutkimuksen caseyritys VR Cargo voi tehdä päätöksiä panostuksistaan eri hankkeisiin ja ylipäätänsä siitä, missä kannattaa olla mukana sekä kuinka löytää strategisia kehityskumppaneita. Työn teoriaosuus tehtiin kirjallisuuskatsauksena aiempaan T&K-tutkimukseen ja empiria osuus suoritettiin tekemällä teemahaastatteluja VR Cargossa sekä kahdessa vertailuyrityksessä. Tutkimuksessa havaittiin useita erilaisia kriittisiä tekijöitä T&K-yhteistyöhankkeisiin liittyen. Yrityksen on mm. huomioitava T&K-hankkeen strateginen sopivuus ja lisäarvo, määriteltävä motiivit ja riskit, yrityskohtaisten tekijöiden ovat oltava kunnossa, on tiedettävä millainen on yritykselle hyvä ja sopiva partneri sekä yhteistyötason tekijät on huomioitava. Tutkimuksessa rakennettua hankkeiden valintaan liittyvää päätöspuumallia, ei ole tarkoitettu tekemään lopullista valintapäätöstä, vaan sen tarkoituksena on helpottaa ja tukea valintaprosessia ja alentaa näin todennäköisyyttä unohtaa jokin tärkeä seikka valintaprosessissa.
Resumo:
The Gulf of Finland is said to be one of the densest operated sea areas in the world. It is a shallow and economically vulnerable sea area with dense passenger and cargo traffic of which petroleum transports have a share of over 50 %. The winter conditions add to the risks of maritime traffic in the Gulf of Finland. It is widely believed that the growth of maritime transportation will continue also in the future. The Gulf of Finland is surrounded by three very different national economies with, different maritime transportation structures. Finland is a country of high GDP/per capita with a diversified economic structure. The number of ports is large and the maritime transportation consists of many types of cargoes: raw materials, industrial products, consumer goods, coal and petroleum products, and the Russian transit traffic of e.g. new cars and consumer goods. Russia is a large country with huge growth potential; in recent years, the expansion of petroleum exports has lead to a strong economic growth, which is also apparent in the growth of maritime transports. Russia has been expanding its port activities in the Gulf of Finland and it is officially aiming to transport its own imports and exports through the Russian ports in the future; now they are being transported to great extend through the Finnish, Estonian and other Baltic ports. Russia has five ports in the Gulf of Finland. Estonia has also experienced fast economic growth, but the growth has been slowing down already during the past couples of years. The size of its economy is small compared to Russia, which means the transported tonnes cannot be very massive. However, relatively large amounts of the Russian petroleum exports have been transported through the Estonian ports. The future of the Russian transit traffic in Estonia looks nevertheless uncertain and it remains to be seen how it will develop and if Estonia is able to find replacing cargoes if the Russian transit traffic will come to an end in the Estonian ports. Estonia’s own import and export consists of forestry products, metals or other raw materials and consumer goods. Estonia has many ports on the shores of the Gulf of Finland, but the port of Tallinn dominates the cargo volumes. In 2007, 263 M tonnes of cargoes were transported in the maritime traffic in the Gulf of Finland, of which the share of petroleum products was 56 %. 23 % of the cargoes were loaded or unloaded in the Finnish ports, 60 % in the Russian ports and 17 % in the Estonian ports. The largest ports were Primorsk (74.2 M tonnes) St. Petersburg (59.5 M tonnes), Tallinn (35.9 M tonnes), Sköldvik (19.8 M tonnes), Vysotsk (16.5 M tonnes) and Helsinki (13.4 M) tonnes. Approximately 53 600 ship calls were made in the ports of the Gulf of Finland. The densest traffic was found in the ports of St. Petersburg (14 651 ship calls), Helsinki (11 727 ship calls) and Tallinn (10 614 ship calls) in 2007. The transportation scenarios are usually based on the assumption that the amount of transports follows the development of the economy, although also other factors influence the development of transportation, e.g. government policy, environmental aspects, and social and behavioural trends. The relationship between the development of transportation and the economy is usually analyzed in terms of the development of GDP and trade. When the GDP grows to a certain level, especially the international transports increase because countries of high GDP produce, consume and thus transport more. An effective transportation system is also a precondition for the economic development. In this study, the following factors were taken into consideration when formulating the future scenarios: maritime transportation in the Gulf of Finland 2007, economic development, development of key industries, development of infrastructure and environmental aspects in relation to maritime transportation. The basic starting points for the three alternative scenarios were: • the slow growth scenario: economic recession • the average growth scenario: economy will recover quickly from current instability • the strong growth scenario: the most optimistic views on development will realize According to the slow growth scenario, the total tonnes for the maritime transportation in the Gulf of Finland would be 322.4 M tonnes in 2015, which would mean a growth of 23 % compared to 2007. In the average growth scenario, the total tonnes were estimated to be 431.6 M tonnes – a growth of 64 %, and in the strong growth scenario 507.2 M tonnes – a growth of 93%. These tonnes were further divided into petroleum products and other cargoes by country, into export, import and domestic traffic by country, and between the ports. For petroleum products, the share of crude oil and oil products was estimated and the number of tanker calls in 2015 was calculated for each scenario. However, the future development of maritime transportation in the GoF is dependent on so many societal and economic variables that it is not realistic to predict one exact point estimate value for the cargo tonnes for a certain scenario. Plenty of uncertainty is related both to the degree in which the scenario will come true as well as to the cause-effect relations between the different variables. For these reasons, probability distributions for each scenario were formulated by an expert group. As a result, a range for the total tonnes of each scenario was formulated and they are as follows: the slow growth scenario: 280.8 – 363 M tonnes (expectation value 322.4 M tonnes)
Resumo:
During the last few years, the discussion on the marginal social costs of transportation has been active. Applying the externalities as a tool to control transport would fulfil the polluter pays principle and simultaneously create a fair control method between the transport modes. This report presents the results of two calculation algorithms developed to estimate the marginal social costs based on the externalities of air pollution. The first algorithm calculates the future scenarios of sea transport traffic externalities until 2015 in the Gulf of Finland. The second algorithm calculates the externalities of Russian passenger car transit traffic via Finland by taking into account both sea and road transport. The algorithm estimates the ship-originated emissions of carbon dioxide (CO2), nitrogen oxides (NOx), sulphur oxides (SOx), particulates (PM) and the externalities for each year from 2007 to 2015. The total NOx emissions in the Gulf of Finland from the six ship types were almost 75.7 kilotons (Table 5.2) in 2007. The ship types are: passenger (including cruisers and ROPAX vessels), tanker, general cargo, Ro-Ro, container and bulk vessels. Due to the increase of traffic, the estimation for NOx emissions for 2015 is 112 kilotons. The NOx emission estimation for the whole Baltic Sea shipping is 370 kilotons in 2006 (Stipa & al, 2007). The total marginal social costs due to ship-originated CO2, NOx, SOx and PM emissions in the GOF were calculated to almost 175 million Euros in 2007. The costs will increase to nearly 214 million Euros in 2015 due to the traffic growth. The major part of the externalities is due to CO2 emissions. If we neglect the CO2 emissions by extracting the CO2 externalities from the results, we get the total externalities of 57 million Euros in 2007. After eight years (2015), the externalities would be 28 % lower, 41 million Euros (Table 8.1). This is the result of the sulphur emissions reducing regulation of marine fuels. The majority of the new car transit goes through Finland to Russia due to the lack of port capacity in Russia. The amount of cars was 339 620 vehicles (Statistics of Finnish Customs 2008) in 2005. The externalities are calculated for the transportation of passenger vehicles as follows: by ship to a Finnish port and, after that, by trucks to the Russian border checkpoint. The externalities are between 2 – 3 million Euros (year 2000 cost level) for each route. The ports included in the calculations are Hamina, Hanko, Kotka and Turku. With the Euro-3 standard trucks, the port of Hanko would be the best choice to transport the vehicles. This is because of lower emissions by new trucks and the saved transport distance of a ship. If the trucks are more polluting Euro 1 level trucks, the port of Kotka would be the best choice. This indicates that the truck emissions have a considerable effect on the externalities and that the transportation of light cargo, such as passenger cars by ship, produces considerably high emission externalities. The emission externalities approach offers a new insight for valuing the multiple traffic modes. However, the calculation of the marginal social costs based on the air emission externalities should not be regarded as a ready-made calculation system. The system is clearly in the need of some improvement but it can already be considered as a potential tool for political decision making.
Resumo:
Teresa de Jesús era una prosista excepcional; su primer editor, el gran humanista fray Luis de León, supo señalar muy bien 'la elegancia desafeitada que deleita en extremo' de su escritura.
Resumo:
The mobile networks of earlier and current generations, or 2G and 3G networks, provide users voice and packet services with higher transmission rates and good quality over the same core network. When developing the next generation of mobile networks the current quality of services needs to be maintained. This thesis concentrates on the next generation mobile network, especially on the evolution of the packet network part. The new mobile network has requirements for the common packet backbone network, Mobile Packet Backbone Network, which is additionally discussed in this study. The next generation mobile network, called LTE/SAE, is currently under testing. The test system is called Container Trial System. It is a mini sized LTE/SAE site. The LTE/SAE is studied in this thesis concentrating on the evolved packet core, the SAE part of the composition. The empirical part of the study compares the LTE/SAE Container Trial System and commercial network designs and additionally produces documentation for internal personnel and customers. The research is performed by comparing the documentations and specifications of both the Container Trial System and commercial network. Since the LTE commercial network is not yet constructed, the comparison is done theoretically. The purpose is furthermore to find out if there are any design issues that could be done differently in the next version of the Container Trial System.
Resumo:
Russia has been one of the fastest developing economic areas in the world. Based on the GDP, the Russian economy grew evenly since the crisis in 1998 up till 2008. The growth in the gross domestic product has annually been some 5–10%. In 2007, the growth reached 8.1%, which is the highest figure after the 10% growth in 2000. Due to the growth of the economy and wage levels, purchasing power and consumption have been strongly increasing. The growing consumption has especially increased the imports of durables, such as passenger cars, domestic appliances and electronics. The Russian ports and infrastructure have not been able to satisfy the growing needs of exports and imports, which is why quite a large share of Russian foreign trade is going through third countries as transit transports. Finnish ports play a major role in transit transports to and from Russia. About 15% of the total value of Russian imports was transported through Finland in 2008. The economic recession that started in autumn 2008 and continues to date has had an impact on the economic development of Russia. The export income has decreased, mainly due to the reduced world market prices of energy products (oil and gas) and raw minerals. Investments have been postponed, getting credit is more difficult than before, and the ruble has weakened in relation to the euro and the dollar. The imports are decreasing remarkably, and are not forecast to reach the 2008 volumes even in 2012. The economic crisis is reflected in Finland's transit traffic. The volume of goods transported through Finland to and from Russia has decreased almost in the same proportion as the imports of goods to Russia. The biggest risk threatening the development of the Russian economy over long term is its dependence on export income from oil, gas, metals, minerals and forest products, as well as the trends of the world market prices of these products. Nevertheless, it is expected that the GDP of Russia will start to grow again in the forthcoming years due to the increased demand for energy products and raw minerals in the world. At the same time, it is obvious that the world market prices of these products will go up with the increasing demand. The increased income from exports will lead to a growth of imports, especially those of consumer goods, as the living standard of Russian citizens rises. The forecasts produced by the Russian Government concerning the economic development of Russia up till 2030 also indicate a shift in exported goods from raw materials to processed products, which together with energy products will become the main export goods of Russia. As a consequence, Russia may need export routes through third countries, which can be seen as an opportunity for increased transit transports through the ports of Finland. The ports competing with the ports of Finland for Russian foreign trade traffic are the Russian Baltic Sea ports and the ports of the Baltic countries. The strongest competitors are the Baltic Sea ports handling containers. On the Russian Baltic Sea, these ports include Saint Petersburg, Kaliningrad and, in the near future, the ports of Ust-Luga and possibly Vyborg. There are plans to develop Ust-Luga and Vyborg as modern container ports, which would become serious competitors to the Finnish ports. Russia is aiming to redirect as large a share as possible of foreign trade traffic to its own ports. The ports of Russia and the infrastructure associated with them are under constant development. On the other hand, the logistic capacity of Russia is not able to satisfy the continually growing needs of the Russian foreign trade. The capacity problem is emphasized by a structural incompatibility between the exports and imports in the Russian foreign trade. Russian exports can only use a small part of the containers brought in with imports. Problems are also caused by the difficult ice conditions and narrow waterways leading to the ports. It is predicted that Finland will maintain its position as a transit route for the Russian foreign trade, at least in the near future. The Russian foreign trade is increasing, and Russia will not be able to develop its ports in proportion with the increasing foreign trade. With the development of port capacity, cargo flows through the ports of Russia will grow. Structural changes in transit traffic are already visible. Firms are more and more relocating their production to Russia, for example as regards the assembly of cars and warehousing services. Simultaneously, an increasing part of transit cargoes are sent directly to Russia without unloading and reloading in Finland. New product groups have nevertheless been transported through Finland (textile products and tools), replacing the lost cargos. The global recession that started in autumn 2008 has influenced the volume of Russian imports and, consequently, the transit volumes of Finland, but the recession is not expected to be of long duration, and will thus only have a short-term impact on transit volumes. The Finnish infrastructure and services offered by the logistic chain should also be ready to react to the changes in imported product groups as well as to the change in Russian export products in the future. If the development plans of the Russian economy are realized, export products will be more refined, and the share of energy and raw material products will decrease. The other notable factor to be taken into consideration is the extremely fast-changing business environment in Russia. Operators in the logistic chain should be flexible enough to adapt to all kinds of changes to capitalise on business opportunities offered by the Russian foreign trade for the companies and for the transit volumes of Finnish ports, also in the future.
Resumo:
The aim of the thesis is to analyze traffic flows and its development from North European companies` point of view to China and Russia using data from logistics questionnaire. Selected North European companies are large Finnish and Swedish companies. The questionnaire was sent via email to the target group. The study is based on the answers got from respondent companies from years 2006, 2009 and 2010. In the thesis Finnish Talouselämä newspaper and Swedish Affärsdata are used as a database to find the target companies for the survey. Respondents were most often logistics managers in companies. In the beginning of the thesis concepts of transportation logistics is presented, including container types, trade terms, axel loads in roads and in railways. Also there is information about warehousing types and terminals. After that, general information of Chinese and Russian transportation logistics is presented. Chinese and Russian issues are discussed in two sections. In both of them it is analyzed economic development, freight transport and trade balance. Some practical examples of factory inaugurations in China and Russia are presented that Finnish and Swedish companies have completed. In freight transport section different transportation modes, logistics outsourcing and problems of transportation logistics is discussed. The results of the thesis show that transportation flows between Europe and China is changing. Freight traffic from China to European countries will strengthen even more from the current base. When it comes to Russia and Europe, traffic flows seem to be changing from eastbound traffic to westbound traffic. It means that in the future it is expected more freight traffic from Russia to Europe. Some probable reasons for that are recent factory establishments in Russia and company interviews support also this observation. Effects of the economic recession are mainly seen in the lower transportation amounts in 2009.
Resumo:
Este trabalho teve como objetivo principal a análise econômica e financeira de um projeto com 100 fornos tipo container industrial e 100 fornos tipo retangular de 40st. para a produção de carvão vegetal. Para tanto, utilizaram-se como indicadores financeiros a lucratividade, rentabilidade, prazo de retorno do investimento e ponto de equilíbrio. Os indicadores econômicos utilizados para proceder a análise econômica foram o VPL, TIR, B(C)PE e B/C. Concluíram que os fornos são viáveis do ponto de vista econômico e financeiro. Entretanto o forno container por ter maior VPL daria um retorno mais lucrativo quando comparado ao retangular de 40 st.