911 resultados para Compressão de dados (Computação)
Resumo:
O trabalho busca analisar e entender se a aplicação de técnicas de Data mining em processos de aquisição de clientes de cartão de crédito, especificamente os que não possuem uma conta corrente em banco, podem trazer resultados positivos para as empresas que contam com processos ativos de conquista de clientes. Serão exploradas três técnicas de amplo reconhecimento na comunidade acadêmica : Regressão logística, Árvores de decisão, e Redes neurais. Será utilizado como objeto de estudo uma empresa do setor financeiro, especificamente nos seus processos de aquisição de clientes não correntistas para o produto cartão de crédito. Serão mostrados resultados da aplicação dos modelos para algumas campanhas passadas de venda de cartão de crédito não correntistas, para que seja possível verificar se o emprego de modelos estatísticos que discriminem os clientes potenciais mais propensos dos menos propensos à contratação podem se traduzir na obtenção de ganhos financeiros. Esses ganhos podem vir mediante redução dos custos de marketing abordando-se somente os clientes com maiores probabilidades de responderem positivamente à campanha. A fundamentação teórica se dará a partir da introdução dos conceitos do mercado de cartões de crédito, do canal telemarketing, de CRM, e das técnicas de data mining. O trabalho apresentará exemplos práticos de aplicação das técnicas mencionadas verificando os potenciais ganhos financeiros. Os resultados indicam que há grandes oportunidades para o emprego das técnicas de data mining nos processos de aquisição de clientes, possibilitando a racionalização da operação do ponto de vista de custos de aquisição.
Resumo:
Trata da aplicação de ferramentas de Data Mining e do conceito de Data Warehouse à coleta e análise de dados obtidos a partir das ações da Secretaria de Estado da Educação de São Paulo. A variável dependente considerada na análise é o resultado do rendimento das escolas estaduais obtido através das notas de avaliação do SARESP (prova realizada no estado de São Paulo). O data warehouse possui ainda dados operacionais e de ações já realizadas, possibilitando análise de influência nos resultados
Resumo:
O objetivo deste trabalho é testar a aplicação de um modelo gráfico probabilístico, denominado genericamente de Redes Bayesianas, para desenvolver modelos computacionais que possam ser utilizados para auxiliar a compreensão de problemas e/ou na previsão de variáveis de natureza econômica. Com este propósito, escolheu-se um problema amplamente abordado na literatura e comparou-se os resultados teóricos e experimentais já consolidados com os obtidos utilizando a técnica proposta. Para tanto,foi construído um modelo para a classificação da tendência do "risco país" para o Brasil a partir de uma base de dados composta por variáveis macroeconômicas e financeiras. Como medida do risco adotou-se o EMBI+ (Emerging Markets Bond Index Plus), por ser um indicador amplamente utilizado pelo mercado.
Resumo:
Crescimento espacial tem sido um dos importantes fenômenos observados nas cidades contemporâneas, sendo a identificação de processos e padrões, de suas causas e conseqüências, um desafio para a ciência. Nesse caminho, esta pesquisa propõe um modelo de simulação de crescimento urbano dedicado a realizar simulações, incluindo de modo integrado fatores urbanos, naturais e institucionais, promovendo simultaneidade entre crescimento externo e interno a um espaço urbano preexistente, representados e modelados utilizando integradamente grafos, autômato celular e geotecnologias. Experimentos com modos de crescimento (axial, polar e difuso) e com cenários alternativos estão implementados, bem como são investigadas questões urbanas de conversão de território, de distribuição dos estoques construídos, de formação de periferias e vazios, de obsolescência e revitalização, de mono e policentralidade, de abrangência de funções urbanas e de influência da distância, de renaturalização e preservação ambiental, de limites de crescimento e problemas ambientais intra-urbanos, de ponderação de atributos, de crescimento difuso, fragmentação e compacidade. Estão também incluídas possibilidades de compressão de dados e alternativas de visualização de resultados, alcançando estudos exploratórios sobre forma urbana e sustentabilidade. O trabalho está dedicado inicialmente a fundamentar, construir e apresentar o modelo de simulação de crescimento denominado SACI – Simulador do Ambiente da Cidade®, depois a realizar simulações num caso real, em Pelotas, RS, quando são demonstrados os procedimentos de calibração, terminando com experimentos escolhidos para avançar na discussão do fenômeno do crescimento urbano. Esforços estão realizados para oferecer um instrumento de simulação com possibilidade de uso para além dos interesses exclusivos desta investigação, particularmente no campo do ensino e da prática do planejamento urbano municipal. Sendo assim, este argumento se dedica simultaneamente a documentar a trajetória de construção de um modelo de simulação de crescimento urbano, a explicitar sua aplicabilidade em casos de cidades reais e a contribuir para a compreensão teórica da dinâmica urbana e ambiental na cidade.
Resumo:
O uso combinado de algoritmos para a descoberta de tópicos em coleções de documentos com técnicas orientadas à visualização da evolução daqueles tópicos no tempo permite a exploração de padrões temáticos em corpora extensos a partir de representações visuais compactas. A pesquisa em apresentação investigou os requisitos de visualização do dado sobre composição temática de documentos obtido através da modelagem de tópicos – o qual é esparso e possui multiatributos – em diferentes níveis de detalhe, através do desenvolvimento de uma técnica de visualização própria e pelo uso de uma biblioteca de código aberto para visualização de dados, de forma comparativa. Sobre o problema estudado de visualização do fluxo de tópicos, observou-se a presença de requisitos de visualização conflitantes para diferentes resoluções dos dados, o que levou à investigação detalhada das formas de manipulação e exibição daqueles. Dessa investigação, a hipótese defendida foi a de que o uso integrado de mais de uma técnica de visualização de acordo com a resolução do dado amplia as possibilidades de exploração do objeto em estudo em relação ao que seria obtido através de apenas uma técnica. A exibição dos limites no uso dessas técnicas de acordo com a resolução de exploração do dado é a principal contribuição desse trabalho, no intuito de dar subsídios ao desenvolvimento de novas aplicações.
Resumo:
No jornalismo, são chamadas suítes as matérias que trazem a sequência de um fato já noticiado. Conforme a imprensa cresce na Internet, podemos ver frequentemente um mesmo fato sendo repetido em portais de notícias dia após dia. Este trabalho visa medir as quantidades de artigos a respeito de um mesmo assunto que tenha iniciado uma suíte, com esta medição acontecendo ao longo dos dias em que ele foi explorado. Os resultados permitiram que fossem encontrados padrões que identifiquem os dias em que os fatos mais relevantes foram noticiados, bem como o tempo em que o assunto foi desenvolvido. Para esta análise, foram escolhidos alguns dos mais importantes fatos que viraram suítes no Brasil ao longo dos últimos anos. As quantidades de artigos são provenientes do maior portal de notícias do país, o G1, e da base de dados do Media Cloud Brasil.
Resumo:
A implantação dos sistemas de notas fiscais eletrônicas proporcionou uma grande quantidade de dados para as administrações tributárias. Analisar esses dados e extrair informações importantes é um desafio. Esse trabalho buscou, por meio de técnicas de análise de dados e mineração de textos, identificar, a partir da descrição dos serviços prestados, notas emitidas incorretamente a fim de respaldar um melhor planejamento de fiscalizações.
Resumo:
Este trabalho minera as informações coletadas no processo de vestibular entre 2009 e 2012 para o curso de graduação de administração de empresas da FGV-EAESP, para estimar classificadores capazes de calcular a probabilidade de um novo aluno ter bom desempenho. O processo de KDD (Knowledge Discovery in Database) desenvolvido por Fayyad et al. (1996a) é a base da metodologia adotada e os classificadores serão estimados utilizando duas ferramentas matemáticas. A primeira é a regressão logística, muito usada por instituições financeiras para avaliar se um cliente será capaz de honrar com seus pagamentos e a segunda é a rede Bayesiana, proveniente do campo de inteligência artificial. Este estudo mostre que os dois modelos possuem o mesmo poder discriminatório, gerando resultados semelhantes. Além disso, as informações que influenciam a probabilidade de o aluno ter bom desempenho são a sua idade no ano de ingresso, a quantidade de vezes que ele prestou vestibular da FGV/EAESP antes de ser aprovado, a região do Brasil de onde é proveniente e as notas das provas de matemática fase 01 e fase 02, inglês, ciências humanas e redação. Aparentemente o grau de formação dos pais e o grau de decisão do aluno em estudar na FGV/EAESP não influenciam nessa probabilidade.
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Pós-graduação em Desenvolvimento Humano e Tecnologias - IBRC
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Energia na Agricultura) - FCA
Resumo:
A investigação de métodos, técnicas e ferramentas que possam apoiar os processos decisórios em sistemas elétricos de potência, em seus vários setores, é um tema que tem despertado grande interesse. Esse suporte à decisão pode ser efetivado mediante o emprego de vários tipos de técnicas, com destaque para aquelas baseadas em inteligência computacional, face à grande aderência das mesmas a domínios com incerteza. Nesta tese, são utilizadas as redes Bayesianas para a extração de modelos de conhecimento a partir dos dados oriundos de sistemas elétricos de potência. Além disso, em virtude das demandas destes sistemas e de algumas limitações impostas às inferências em redes bayesianas, é desenvolvido um método original, utilizando algoritmos genéticos, capaz de estender o poder de compreensibilidade dos padrões descobertos por essas redes, por meio de um conjunto de procedimentos de inferência em redes bayesianas para a descoberta de cenários que propiciem a obtenção de um valor meta, considerando a incorporação do conhecimento a priori do especialista, a identificação das variáveis mais influentes para obtenção desses cenários e a busca de cenários ótimos que estabeleçam valores, definidos e ponderados pelo usuário/especialista, para mais de uma variável meta.