844 resultados para Color of food
Resumo:
Cells are the fundamental building block of plant based food materials and many of the food processing born structural changes can fundamentally be derived as a function of the deformations of the cellular structure. In food dehydration the bulk level changes in porosity, density and shrinkage can be better explained using cellular level deformations initiated by the moisture removal from the cellular fluid. A novel approach is used in this research to model the cell fluid with Smoothed Particle Hydrodynamics (SPH) and cell walls with Discrete Element Methods (DEM), that are fundamentally known to be robust in treating complex fluid and solid mechanics. High Performance Computing (HPC) is used for the computations due to its computing advantages. Comparing with the deficiencies of the state of the art drying models, the current model is found to be robust in replicating drying mechanics of plant based food materials in microscale.
Resumo:
This article presents mathematical models to simulate coupled heat and mass transfer during convective drying of food materials using three different effective diffusivities: shrinkage dependent, temperature dependent and average of those two. Engineering simulation software COMSOL Multiphysics was utilized to simulate the model in 2D and 3D. The simulation results were compared with experimental data. It is found that the temperature dependent effective diffusivity model predicts the moisture content more accurately at the initial stage of the drying, whereas, the shrinkage dependent effective diffusivity model is better for the final stage of the drying. The model with shrinkage dependent effective diffusivity shows evaporative cooling phenomena at the initial stage of drying. This phenomenon was investigated and explained. Three dimensional temperature and moisture profiles show that even when the surface is dry, inside of the sample may still contain large amount of moisture. Therefore, drying process should be carefully dealt with otherwise microbial spoilage may start from the centre of the ‘dried’ food. A parametric investigation has been conducted after the validation of the model.
Resumo:
Purpose Food refusal is part of normal toddler development due to an innate ability to self-regulate energy intake and the onset of neophobia. For parents, this ‘fussy’ stage causes great concern, prompting use of coercive feeding practices which ignore a child’s own hunger and satiety cues, promoting overeating and overweight. This analysis defines characteristics of the ‘good eater’ using latent variable structural equation modelling and the relationship with maternal perception of her child as a fussy eater. Methods Mothers in the control group of the NOURISH and South Australian Infants Dietary Intake studies (n=332) completed a self-administered questionnaire - when child was age 12-16 months - describing refusal of familiar and unfamiliar foods and maternal perception as fussy/not fussy. Weight-for-age z-score (WAZ) was derived from weight measured by study staff. Questionnaire items and WAZ were combined in AMOS to represent the latent variable the ‘good eater’. Results/findings Mean age(sd) of children was 13.8(1.3) months, mean WAZ(sd), .58(.86) and 49% were male. The ‘good eater’ was represented by higher WAZ, a child that hardly ever refuses food, hardly ever refuses familiar food, and willing to eat unfamiliar foods (x2/df=2.80, GFI=.98, RMSEA=.07(.03-.12), CFI=.96). The ‘good eater’ was inversely associated with maternal perception of her child as a fussy eater (β=-.64, p<.05). Conclusions Toddlers displaying characteristics of a ‘good eater’ are not perceived as fussy, but these characteristics, especially higher WAZ, may be undesirable in the context of obesity prevention. Clinicians can promote food refusal as normal and even desirable in healthy young children.
Resumo:
This thesis develops comprehensive mathematical models for an advanced drying technology Intermittent Microwave Convective Drying (IMCD). The models provide an improved physical understanding of the heat and mass transport during the drying process, which will help to improve the quality of dried food and energy efficiency of the process, as well as will increase the ability of automation and optimization. The final model in this thesis represents the most comprehensive fundamental multiphase model for IMCD that considers 3D electromagnetics coupled with multiphase porous media transport processes. The 3D electromagnetics considers Maxwell's equation and multiphase transport model considers three different phases: solid matrix, liquid water and gas consisting water vapour and air. The multiphase transport includes pressure-driven flow, capillary diffusion, binary diffusion, and evaporation. The models developed in this thesis were validated with extensive experimental investigations.
Resumo:
Issue addressed The paper examines the meanings of food safety among food businesses deemed non-compliant and considers the need for an ‘insider perspective’ to inform a more nuanced health promotion practice. Methods In-depth interviews were conducted with 29 food business operators who had been recently deemed ‘non-compliant’ through Council inspection. Result Paradoxically, these ‘non-compliers’ revealed a strong belief in the importance of food safety as well as a desire to comply with the regulations as communicated to them by Environmental Health Officers (EHOs). Conclusions The evidence base of food safety is largely informed by the science of food hazards, yet there is a very important need to illuminate the ‘insider’ experience of food businesses doing food safety on a daily basis. This requires a more socially nuanced appreciation of food businesses beyond the simple dichotomy of compliant/ non-compliant. So what? Armed with a deeper understanding of the social context surrounding food safety practice, it is anticipated that a more balanced, collaborative mode of food safety health promotion could develop which could add to the current signature model of regulation.
Resumo:
Intermittent microwave convective drying (IMCD) is an advanced technology that improves both energy efficiency and food quality in drying. Modelling of IMCD is essential to understand the physics of this advanced drying process and to optimize the microwave power level and intermittency during drying. However, there is still a lack of modelling studies dedicated to IMCD. In this study, a mathematical model for IMCD was developed and validated with experimental data. The model showed that the interior temperature of the material was higher than the surface in IMCD, and that the temperatures fluctuated and redistributed due to the intermittency of the microwave power. This redistribution of temperature could significantly contribute to the improvement of product quality during IMCD. Limitations when using Lambert's Law for microwave heat generation were identified and discussed.
Resumo:
Background: Eosinophilic esophagitis (EE) is an emerging condition where patients commonly present with symptoms of gastroesophageal reflux disease and fail to respond adequately to anti-reflux therapy. Food allergy is currently recognized as the main immunological cause of EE; recent evidence suggests an etiological role for inhalant allergens. The presence of EE appears to be associated with other atopic illnesses. Objectives: To report the sensitization profile of both food and inhalant allergens in our EE patient cohort in relation to age, and to profile the prevalence of other allergic conditions in patients with EE. Method: The study prospectively analyzed allergen sensitization profiles using skin prick tests to common food allergens and inhalant allergens in 45 children with EE. Patch testing to common food allergens was performed on 33 patients in the same cohort. Comorbidity of atopic eczema, asthma, allergic rhinitis and anaphylaxis were obtained from patient history. Results: Younger patients with EE showed more IgE and patch sensitization to foods while older patients showed greater IgE sensitization to inhalant allergens. The prevalence of atopic eczema, allergic rhinitis and asthma was significantly increased in our EE cohort compared with the general Australian population. A total of 24% of our cohort of patients with EE had a history of anaphylaxis. Conclusion: In children with EE, the sensitization to inhalant allergens increases with age, particularly after 4 years. Also, specific enquiry about severe food reactions in patients presenting with EE is strongly recommended as it appears this patient group has a high incidence of anaphylaxis. © 2007 The Authors.
Resumo:
Many arthropod predators and parasitoids exhibit either stage-specific or lifetime omnivory, in that they include extra-floral nectar, floral nectar, honeydew or pollen in their immature and/or adult diet. Access to these plant-derived foods can enhance pest suppression by increasing both the individual fitness and local density of natural enemies. Commercial products such as Amino-Feed®, Envirofeast®, and Pred-Feed® can be applied to crops to act as artificial-plant-derived foods. In laboratory and glasshouse experiments we examined the influence of carbohydrate and protein rich Amino-Feed UV® or Amino-Feed, respectively, on the fitness of a predatory nabid bug Nabis kinbergii Reuter (Hemiptera: Nabidae) and bollworm pupal parasitoid Ichneumon promissorius (Erichson) (Hymenoptera: Ichneumonidae). Under the chosen conditions, the provision of either wet or dry residues of Amino-Feed UV had no discernable effect on immediate or longer-term survival and immature development times of N. kinbergii. In contrast, the provision of honey, Amino-Feed plus extrafloral nectar, and extrafloral nectar alone had a marked effect on the longevity of I. promissorius, indicating that they were limited by at least carbohydrates as an energy source, but probably not protein. Compared with a water only diet, the provision of Amino-Feed plus extrafloral nectar increased the longevity of males and females of I. promissorius by 3.0- and 2.4-fold, respectively. Not only did female parasitoids live longer when provided food, but the total number of eggs laid and timing of deposition was affected by diet under the chosen conditions. Notably, females in the water and honey treatments deposited greater numbers of eggs earlier in the trial, but this trend was unable to be sustained over their lifetime. Egg numbers in these treatments subsequently fell below the levels achieved by females in the Amino-Feed plus extrafloral nectar and cotton extrafloral nectar only treatments. Furthermore, there were times when the inclusion of the Amino-Feed was beneficial compared with cotton extrafloral nectar only. Artificial food supplements and plant-derived foods are worthy of further investigation because they have potential to improve the ecosystem service of biological pest control in targeted agroecosystems by providing natural enemies with an alternative source of nutrition, particularly during periods of prey/host scarcity.
Resumo:
1. Litter samples were collected at the end of the production cycle from spread litter in a single shed from each of 28 farms distributed across the three Eastern seaboard States of Australia. 2. The geometric mean for Salmonella was 44 Most Probable Number (MPN)/g for the 20 positive samples. Five samples were between 100 and 1000 MPN/g and one at 105 MPN/g, indicating a range of factors are contributing to these varying loads of this organism in litter. 3. The geometric mean for Campylobacter was 30 MPN/g for the 10 positive samples, with 7 of these samples being 100 MPN/g. The low prevalence and incidence of Campylobacter were possibly due to the rapid die-off of this organism. 4. E. coli values were markedly higher than the two key pathogens (geometric mean 20 x 105 colony forming units (cfu)/g) with overall values being more or less within the same range across all samples in the trial, suggesting a uniform contribution pattern of these organisms in litter. 5. Listeria monocytogenes was absent in all samples and this organism appears not to be an issue in litter. 6. The dominant (70% of the isolates) Salmonella serovar was S. Sofia (a common serovar isolated from chickens in Australia) and was isolated across all regions. Other major serovars were S. Virchow and S. Chester (at 10%) and S. Bovismorbificans and S. Infantis (at 8%) with these serovars demonstrating a spatial distribution across the major regions tested. 7. There is potential to re-use litter in the environment depending on end use and the support of relevant application practices and guidelines.
Resumo:
The sustainability of food production has increasingly attracted the attention of consumers, farmers, food and retailing companies, and politicians. One manifestation of such attention is the growing interest in organic foods. Organic agriculture has the potential to enhance the ecological modernisation of food production by implementing the organic method as a preventative innovation that simultaneously produces environmental and economic benefits. However, in addition to the challenges to organic farming, the small market share of organic products in many countries today and Finland in particular risks undermining the achievement of such benefits. The problems identified as hindrances to the increased consumption of organic food are the poor availability, limited variety and high prices of organic products, the complicated buying decisions and the difficulties in delivering the intangible value of organic foods. Small volumes and sporadic markets, high costs, lack of market information, as well as poor supply reliability are obstacles to increasing the volume of organic production and processing. These problems shift the focus from a single actor to the entire supply chain and require solutions that involve more interaction among the actors within the organic chain. As an entity, the organic food chain has received very little scholarly attention. Researchers have mainly approached the organic chain from the perspective of a single actor, or they have described its structure rather than the interaction between the actors. Consequently, interaction among the primary actors in organic chains, i.e. farmers, manufacturers, retailers and consumers, has largely gone unexamined. The purpose of this study is to shed light on the interaction of the primary actors within a whole organic chain in relation to the ecological modernisation of food production. This information is organised into a conceptual framework to help illuminate this complex field. This thesis integrates the theories and concepts of three approaches: food system studies, supply chain management and ecological modernisation. Through a case study, a conceptual system framework will be developed and applied to a real life-situation. The thesis is supported by research published in four articles. All examine the same organic chains through case studies, but each approaches the problem from a different, complementary perspective. The findings indicated that regardless of the coherent values emphasising responsibility, the organic chains were loosely integrated to operate as a system. The focus was on product flow, leaving other aspects of value creation largely aside. Communication with consumers was rare, and none of the actors had taken a leading role in enhancing the market for organic products. Such a situation presents unsuitable conditions for ecological modernisation of food production through organic food and calls for contributions from stakeholders other than those directly involved in the product chain. The findings inspired a revision of the original conceptual framework. The revised framework, the three-layer framework , distinguishes the different layers of interaction. By gradually enlarging the chain orientation the different but interrelated layers become visible. A framework is thus provided for further research and for understanding practical implications of the performance of organic food chains. The revised framework provides both an ideal model for organic chains in relation to ecological modernisation and demonstrates a situation consistent with the empirical evidence.
Resumo:
Anaerobic digestion is a viable on-site treatment technology for rich organic waste streams such as food waste and blackwater. In contrast to large-scale municipal wastewater treatment plants which are typically located away from the community, the effluent from any type of on-site system is a potential pathogenic hazard because of the intimacy of the system to the community. The native concentrations of the pathogen indicators Escherichia coli, Clostridium perfringens and somatic coliphage were tracked for 30 days under stable operation (organic loading rate (OLR) = 1.8 kgCOD m(-3) day(-1), methane yield = 52% on a chemical oxygen demand (COD) basis) of a two-stage laboratory-scale digester treating a mixture of food waste and blackwater. E. coli numbers were reduced by a factor of 10(6.4) in the thermophilic stage, from 10(7.5+/-0.3) to 10(1.1+/-0.1) cfu 100 mL(-1), but regenerated by a factor of 10(4) in the mesophilic stage. Neither the thermophilic nor mesophilic stages had any significant impact on C. perfringens concentrations. Coliphage concentrations were reduced by a factor of 10(1.4) across the two stages. The study shows that anaerobic digestion only reduces pathogen counts marginally but that counts in effluent samples could be readily reduced to below detection limits by filtration through a 0.22 microm membrane, to investigate membrane filtration as a possible sanitation technique.
Resumo:
Life-history theory states that although natural selection would favour a maximisation of both reproductive output and life-span, such a combination can not be achieved in any living organism. According to life-history theory the reason for the fact that not all traits can be maximised simultaneously is that different traits compete with each other for resources. These relationships between traits that constrain the simultaneous evolution of two or more traits are called trade-offs. Therefore, during different life-stages an individual needs to optimise its allocation of resources to life-history components such as growth, reproduction and survival. Resource limitation acts on these traits and therefore investment in one trait, e.g. reproduction, reduces the resources available for investment in another trait, e.g. residual reproduction or survival. In this thesis I study how food resources during different stages of the breeding event affect reproductive decisions in the Ural owl (Strix uralensis) and the consequences of these decisions on parents and offspring. The Ural owl is a suitable study species for such studies in natural populations since they are long-lived, site-tenacious, and feed on voles. The vole populations in Fennoscandia fluctuate in three- to four-year cycles, which create a variable food environment for the Ural owls to cope with. The thesis gives new insight in reproductive costs and their consequences in natural animal populations with emphasis on underlying physiological mechanisms. I found that supplementary fed Ural owl parents invest supplemented food resources during breeding in own self-maintenance instead of allocating those resources to offspring growth. This investment in own maintenance instead of improving current reproduction had carry-over effects to the following year in terms of increased reproductive output. Therefore, I found evidence that reduced reproductive costs improves future reproductive performance. Furthermore, I found evidence for the underlying mechanism behind this carry-over effect of supplementary food on fecundity. The supplementary-fed parents reduced their feeding investment in the offspring compared to controls, which enabled the fed female parents to invest the surplus resources in parasite resistance. Fed female parents had lower blood parasite loads than control females and this effect lasted until the following year when also reproductive output was increased. Hence, increased investment in parasite resistance when resources are plentiful has the potential to mediate positive carry-over effects on future reproduction. I further found that this carry-over effect was only present when potentials for future reproduction were good. The thesis also provides new knowledge on resource limitation on maternal effects. I found that increased resources prior to egg laying improve the condition and health of Ural owl females and enable them to allocate more resources to reproduction than control females. These additional resources are not allocated to increase the number of offspring, but instead to improve the quality of each offspring. Fed Ural owl females increased the size of their eggs and allocated more health improving immunological components into the eggs. Furthermore, the increased egg size had long-lasting effects on offspring growth, as offspring from larger eggs were heavier at fledging. Limiting resources can have different short- and long-term consequences on reproductive decisions that affect both offspring number and quality. In long-lived organisms, such as the Ural owl, it appears to be beneficial in terms of fitness to invest in long breeding life-span instead of additional investment in current reproduction. In Ural owls, females can influence the phenotypic quality of the offspring by transferring additional resources to the eggs that can have long-lasting effects on growth.