823 resultados para Coefficient of performance
Resumo:
The complex three-dimensional flowfield produced by secondary injection of hot gases in a rocket nozzle for thrust vector control is analyzed by solving unsteady three-dimensional Euler equations with appropriate boundary conditions. Various system performance parameters like secondary jet amplification factor and axial thrust augmentation are deduced by integrating the nozzle wall pressure distributions obtained as part of the flowfield solution and compared with measurements taken in actual static tests. The agreement is good within the practical range of secondary injectant flow rates for thrust vector control applications.
Resumo:
The presently developed two-stage process involves diping the prefired porous disks of n-BaTiO3 in nonaqueous solutions containing Al-buty rate, Ti-isopropoxide, and tetraethyl silicate and subsequent sintering. This leads to uniform distribution of the grain-boundary layer (GBL) modifiers (Al2O3+ TiO2+ SiO2) and better control of the grain size as well as the positive temperature coefficient of resistivity characteristics. The technique is particularly suited for GBL modifiers in low concentrations (< 1%).
Resumo:
The paper is based on a study to develop carbon-glass epoxy hybrid composites with desirable thermal properties for applications at cryogenic temperatures. It analyzes the coefficient of thermal expansion of carbon-epoxy and glass-epoxy composite materials and compares it with the properties of carbon-glass epoxy hybrid composites in the temperature range 300 K to 125K. Urethane modified epoxy matrix system is used to make the composite specimens suitable for use even for temperatures as low as 20K. It is noted that the lay-up with 80% of carbon fibers in the total volume fraction of fibers oriented at 30 degrees and 20% of glass fibers oriented at 0 degrees yields near to zero coefficient of thermal expansion as the temperature is lowered from ambient to 125 K. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Parkin (1978) suggested the velocity method based on the observation that the theoretical rate of consolidation and time factor plot on a log-log scale yields an initial slope of 1:2 up to 50% consolidation. A new method is proposed that is an improvement over Parkin's velocity method because it minimizes the problems encountered in using that method. The results obtained agree with the other methods in use.
Resumo:
A study of the linear electro?optic effect in single crystals of the organic compound, 4?nitro�4??methylbenzylidene aniline is reported. The reduced half?wave voltages have been found to have values 2.8, 1.3, and 1.1 kV at 632.8, 514.5, and 488.0 nm, respectively and the corresponding values of the largest linear electro?optic coefficient have been calculated. The thermal variation of the birefringence has also been investigated and the temperature variation of the refractive index difference is found to have the value, d?n/dT = 15.8 × 10?5 K?1.
Resumo:
We combine multiple scattering and renormalization group methods to calculate the leading order dimensionless virial coefficient k(s) for the friction coefficient of dilute polymer solutions under conditions where the osmotic second virial coefficient vanishes (i.e., at the theta point T-theta). Our calculations are formulated in terms of coupled kinetic equations for the polymer and solvent, in which the polymers are modeled as continuous chains whose configurations evolve under the action of random forces in, the velocity field of the solvent. To lowest order in epsilon=4-d, we find that k(s) = 1.06. This result compares satisfactorily with existing experimental estimates of k(s), which are in the range 0.7-0.8. It is also in good agreement with other theoretical results on chains and suspensions at T-theta. Our calculated k(s) is also found to be identical to the leading order virial coefficient of the tracer friction coefficient at the theta point. We discuss possible reasons for the difficulties encountered when attempting to evaluate k(s) by extrapolating prior renormalization group calculations from semidilute concentrations to the infinitely dilute limit. (C) 1996 American Institute of Physics.
Resumo:
Donor-doped n-BaTiO3 polycrystalline ceramics show a strong negative temperature coefficient of resistivity below the orthorhombic-rhombohedral phase transition point, from 10(2-3) Omega cm af 190 K to 10(10-13) Omega cm at less than or similar to 50 K, with thermal coefficient of resistance alpha = 20-23% K-1. Stable thermal sensors for low-temperature applications are realized therefrom. The negative temperature coefficient of resistivity region can be modified by substituting isovalent ions in the lattice. Highly nonlinear current-voltage (I-V) curves are observed at low temperatures, with a voltage maximum followed by the negative differential resistance. The I-V curves are sensitive to dissipation so that cryogenic sensors can be fabricated for liquid level control, flow rate monitoring, radiation detection or in-rush voltage limitation.
Resumo:
The behaviour of saturated soils undergoing consolidation is very complex, It may not follow Terzaghi's theory over the entire consolidation process, Different soils may behave in such a way as to fit into Terzaghi's theory over some specific stages of the consolidation process (percentage of consolidation), This may be one of the reasons for the difficulties faced by the existing curve-fitting procedures in obtaining the coefficient of consolidation, c(v). It has been shown that the slope of the initial linear portion of the theoretical log U-log T curve is constant over a wider range of degree of consolidation, U, when compared with the other methods in use, This initial well-defined straight line in the log U-log T plot intersects the U = 100% line at T = pi/4, which corresponds to U = 88.3%, The proposed log delta-log t method is based on this observation, which gives the value of c(v) through simple graphical construction, In the proposed method, which is more versatile, identification of the characteristic straight lines is very clear; the intersection of these lines is more precise and the method does not depend upon the initial compression for the determination of c(v).
Resumo:
In this paper optical code-division multiple-access (O-CDMA) packet network is considered, which offers inherent security in the access networks. Two types of random access protocols are proposed for packet transmission. In protocol 1, all distinct codes and in protocol 2, distinct codes as well as shifted versions of all these codes are used. O-CDMA network performance using optical orthogonal codes (OOCs) 1-D and two-dimensional (2-D) wavelength/time single-pulse-per-row (W/T SPR) codes are analyzed. The main advantage of using 2-D codes instead of one-dimensional (1-D) codes is to reduce the errors due to multiple access interference among different users. In this paper, correlation receiver and chip-level receiver are considered in the analysis. Using analytical model, we compute packet-success probability, throughput and compare for OOC and SPR codes in an O-CDMA network and the analysis shows improved performance with SPR codes as compared to OOC codes.