892 resultados para Clinical trials data
Resumo:
The aim of phase II single-arm clinical trials of a new drug is to determine whether it has sufficient promising activity to warrant its further development. For the last several years Bayesian statistical methods have been proposed and used. Bayesian approaches are ideal for earlier phase trials as they take into account information that accrues during a trial. Predictive probabilities are then updated and so become more accurate as the trial progresses. Suitable priors can act as pseudo samples, which make small sample clinical trials more informative. Thus patients have better chances to receive better treatments. The goal of this paper is to provide a tutorial for statisticians who use Bayesian methods for the first time or investigators who have some statistical background. In addition, real data from three clinical trials are presented as examples to illustrate how to conduct a Bayesian approach for phase II single-arm clinical trials with binary outcomes.
Resumo:
We focus on the comparison of three statistical models used to estimate the treatment effect in metaanalysis when individually pooled data are available. The models are two conventional models, namely a multi-level and a model based upon an approximate likelihood, and a newly developed model, the profile likelihood model which might be viewed as an extension of the Mantel-Haenszel approach. To exemplify these methods, we use results from a meta-analysis of 22 trials to prevent respiratory tract infections. We show that by using the multi-level approach, in the case of baseline heterogeneity, the number of clusters or components is considerably over-estimated. The approximate and profile likelihood method showed nearly the same pattern for the treatment effect distribution. To provide more evidence two simulation studies are accomplished. The profile likelihood can be considered as a clear alternative to the approximate likelihood model. In the case of strong baseline heterogeneity, the profile likelihood method shows superior behaviour when compared with the multi-level model. Copyright (C) 2006 John Wiley & Sons, Ltd.
Resumo:
In this paper we set out what we consider to be a set of best practices for statisticians in the reporting of pharmaceutical industry-sponsored clinical trials. We make eight recommendations covering: author responsibilities and recognition; publication timing; conflicts of interest; freedom to act; full author access to data; trial registration and independent review. These recommendations are made in the context of the prominent role played by statisticians in the design, conduct, analysis and reporting of pharmaceutical sponsored trials and the perception of the reporting of these trials in the wider community.
Resumo:
Seamless phase II/III clinical trials combine traditional phases II and III into a single trial that is conducted in two stages, with stage 1 used to answer phase II objectives such as treatment selection and stage 2 used for the confirmatory analysis, which is a phase III objective. Although seamless phase II/III clinical trials are efficient because the confirmatory analysis includes phase II data from stage 1, inference can pose statistical challenges. In this paper, we consider point estimation following seamless phase II/III clinical trials in which stage 1 is used to select the most effective experimental treatment and to decide if, compared with a control, the trial should stop at stage 1 for futility. If the trial is not stopped, then the phase III confirmatory part of the trial involves evaluation of the selected most effective experimental treatment and the control. We have developed two new estimators for the treatment difference between these two treatments with the aim of reducing bias conditional on the treatment selection made and on the fact that the trial continues to stage 2. We have demonstrated the properties of these estimators using simulations
Resumo:
Recently, in order to accelerate drug development, trials that use adaptive seamless designs such as phase II/III clinical trials have been proposed. Phase II/III clinical trials combine traditional phases II and III into a single trial that is conducted in two stages. Using stage 1 data, an interim analysis is performed to answer phase II objectives and after collection of stage 2 data, a final confirmatory analysis is performed to answer phase III objectives. In this paper we consider phase II/III clinical trials in which, at stage 1, several experimental treatments are compared to a control and the apparently most effective experimental treatment is selected to continue to stage 2. Although these trials are attractive because the confirmatory analysis includes phase II data from stage 1, the inference methods used for trials that compare a single experimental treatment to a control and do not have an interim analysis are no longer appropriate. Several methods for analysing phase II/III clinical trials have been developed. These methods are recent and so there is little literature on extensive comparisons of their characteristics. In this paper we review and compare the various methods available for constructing confidence intervals after phase II/III clinical trials.
Resumo:
In an adaptive seamless phase II/III clinical trial interim analysis, data are used for treatment selection, enabling resources to be focused on comparison of more effective treatment(s) with a control. In this paper, we compare two methods recently proposed to enable use of short-term endpoint data for decision-making at the interim analysis. The comparison focuses on the power and the probability of correctly identifying the most promising treatment. We show that the choice of method depends on how well short-term data predict the best treatment, which may be measured by the correlation between treatment effects on short- and long-term endpoints.
Resumo:
There is an urgent need to treat individuals with high blood pressure (BP) with effective dietary strategies. Previous studies suggest a small, but significant decrease in BP after lactotripeptides (LTP) ingestion, although the data are inconsistent. The study aim was to perform a comprehensive meta-analysis of data from all relevant randomised controlled trials (RCT). Medline, Cochrane library, EMBASE and Web of Science were searched until May 2014. Eligibility criteria were RCT that examined the effects of LTP on BP in adults, with systolic BP (SBP) and diastolic BP (DBP) as outcome measures. Thirty RCT met the inclusion criteria, which resulted in 33 sets of data. The pooled treatment effect for SBP was −2.95 mmHg (95% CI: −4.17, −1.73; p < 0.001), and for DBP was −1.51 mmHg (95% CI: −2.21, −0.80; p < 0.001). Sub-group analyses revealed that reduction of BP in Japanese studies was significantly greater, compared with European studies (p = 0.002 for SBP and p < 0.001 for DBP). The 24-h ambulatory BP (AMBP) response to LTP supplementation was statistically non-significant (p = 0.101 for SBP and p = 0.166 for DBP). Both publication bias and “small-study effect” were identified, which shifted the treatment effect towards less significant SBP and non-significant DBP reduction after LTP consumption. LTP may be effective in BP reduction, especially in Japanese individuals; however sub-group, meta-regression analyses and statistically significant publication biases suggest inconsistencies.
Resumo:
Stem cell therapy is one of the most promising treatments for the near future. It is expected that this kind of therapy can ameliorate or even reverse some diseases. With regard to type 1 diabetes, studies analyzing the therapeutic effects of stem cells in humans began in 2003 in the Hospital das Clínicas of the Faculty of Medicine of Ribeirão Preto - SP USP, Brazil, and since then other centers in different countries started to randomize patients in their clinical trials. Herein we summarize recent data about beta cell regeneration, different ways of immune intervention and what is being employed in type 1 diabetic patients with regard to stem cell repertoire to promote regeneration and/or preservation of beta cell mass.
Resumo:
It is well known that unrecognized heterogeneity among patients, such as is conferred by genetic subtype, can undermine the power of randomized trial, designed under the assumption of homogeneity, to detect a truly beneficial treatment. We consider the conditional power approach to allow for recovery of power under unexplained heterogeneity. While Proschan and Hunsberger (1995) confined the application of conditional power design to normally distributed observations, we consider more general and difficult settings in which the data are in the framework of continuous time and are subject to censoring. In particular, we derive a procedure appropriate for the analysis of the weighted log rank test under the assumption of a proportional hazards frailty model. The proposed method is illustrated through application to a brain tumor trial.
Resumo:
A system for screening of nutritional risk is described. It is based on the concept that nutritional support is indicated in patients who are severely ill with increased nutritional requirements, or who are severely undernourished, or who have certain degrees of severity of disease in combination with certain degrees of undernutrition. Degrees of severity of disease and undernutrition were defined as absent, mild, moderate or severe from data sets in a selected number of randomized controlled trials (RCTs) and converted to a numeric score. After completion, the screening system was validated against all published RCTs known to us of nutritional support vs spontaneous intake to investigate whether the screening system could distinguish between trials with a positive outcome and trials with no effect on outcome.
Resumo:
SUMMARY Split-mouth designs first appeared in dental clinical trials in the late sixties. The main advantage of this study design is its efficiency in terms of sample size as the patients act as their own controls. Cited disadvantages relate to carry-across effects, contamination or spilling of the effects of one intervention to another, period effects if the interventions are delivered at different time periods, difficulty in finding similar comparison sites within patients and the requirement for more complex data analysis. Although some additional thought is required when utilizing a split-mouth design, the efficiency of this design is attractive, particularly in orthodontic clinical studies where carry-across, period effects and dissimilarity between intervention sites does not pose a problem. Selection of the appropriate research design, intervention protocol and statistical method accounting for both the reduced variability and potential clustering effects within patients should be considered for the trial results to be valid.
Resumo:
Cluster randomized trials (CRTs) use as the unit of randomization clusters, which are usually defined as a collection of individuals sharing some common characteristics. Common examples of clusters include entire dental practices, hospitals, schools, school classes, villages, and towns. Additionally, several measurements (repeated measurements) taken on the same individual at different time points are also considered to be clusters. In dentistry, CRTs are applicable as patients may be treated as clusters containing several individual teeth. CRTs require certain methodological procedures during sample calculation, randomization, data analysis, and reporting, which are often ignored in dental research publications. In general, due to similarity of the observations within clusters, each individual within a cluster provides less information compared with an individual in a non-clustered trial. Therefore, clustered designs require larger sample sizes compared with non-clustered randomized designs, and special statistical analyses that account for the fact that observations within clusters are correlated. It is the purpose of this article to highlight with relevant examples the important methodological characteristics of cluster randomized designs as they may be applied in orthodontics and to explain the problems that may arise if clustered observations are erroneously treated and analysed as independent (non-clustered).
Resumo:
Schizophrenia is still associated with poor outcome, which is mainly related to negative symptoms, reduced physical activity and low quality of life. Physical activity can be objectively measured without distress using wrist actigraphy. The activity levels during the wake periods of the day have been informative on psychopathology and antipsychotic medication. Several studies demonstrated prominent negative symptoms to be associated with reduced activity levels with strongest correlations in chronic patients. Particularly, the avolition score is correlated with reduced activity levels. Moreover, activity levels differ between DSM-IV schizophrenia spectrum disorders and subtypes as well as between patients treated with olanzapine or risperidone. The longitudinal course of activity levels during an psychotic episode demonstrates considerable variance between subjects. During a psychotic episode patients with low activity levels at baseline experience an amelioration of negative symptoms. In contrast, patients with high activity levels at baseline have stable low negative syndrome scores. Between psychotic episodes less variance is observed. Actigraphy is easily applied in schizophrenia and allows collecting large amounts of crosssectional or longitudinal data. With larger numbers of subjects in controlled trials, continuous recording of activity would foster the detection of different outcome trajectories, which may prove as useful groups to target interventions. In clinical trials, activity monitoring may supplement and validate measures of the negative syndrome and its avolition factor or serve as an outcome marker for physical activity, which is important for metabolic issues and quality of life.