937 resultados para Classificació AMS::53 Differential geometry::53D Symplectic geometry, contact geometry


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The k-symplectic formulation of field theories is especially simple, since only tangent and cotangent bundles are needed in its description. Its defining elements show a close relationship with those in the symplectic formulation of mechanics. It will be shown that this relationship also stands in the presymplectic case. In a natural way,one can mimick the presymplectic constraint algorithm to obtain a constraint algorithmthat can be applied to k-presymplectic field theory, and more particularly to the Lagrangian and Hamiltonian formulations offield theories defined by a singular Lagrangian, as well as to the unified Lagrangian-Hamiltonian formalism (Skinner--Rusk formalism) for k-presymplectic field theory. Two examples of application of the algorithm are also analyzed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La teor\'\ı a de Morales–Ramis es la teor\'\ı a de Galois en el contextode los sistemas din\'amicos y relaciona dos tipos diferentes de integrabilidad:integrabilidad en el sentido de Liouville de un sistema hamiltonianoe integrabilidad en el sentido de la teor\'\ı a de Galois diferencial deuna ecuaci\'on diferencial. En este art\'\i culo se presentan algunas aplicacionesde la teor\'\i a de Morales–Ramis en problemas de no integrabilidadde sistemas hamiltonianos cuya ecuaci\'on variacional normal a lo largode una curva integral particular es una ecuaci\'on diferencial lineal desegundo orden con coeficientes funciones racionales. La integrabilidadde la ecuaci\'on variacional normal es analizada mediante el algoritmode Kovacic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Astrocytes are responsible for regulating extracellular levels of glutamate and potassium during neuronal activity. Glutamate clearance is handled by glutamate transporter subtypes glutamate transporter 1 and glutamate-aspartate transporter in astrocytes. DL-threo-beta-benzyloxyaspartate (TBOA) and dihydrokainate (DHK) are extensively used as inhibitors of glial glutamate transport activity. Using whole-cell recordings, we characterized the effects of both transporter inhibitors on afferent-evoked astrocyte currents in acute cortical slices of 3-week-old rats. When neuronal afferents were stimulated, passive astrocytes responded by a rapid inward current followed by a persistent tail current. The first current corresponded to a glutamate transporter current. This current was inhibited by both inhibitors and by tetrodotoxin. The tail current is an inward potassium current as it was blocked by barium. Besides inhibiting transporter currents, TBOA strongly enhanced the tail current. This effect was barium-sensitive and might be due to a rise in extracellular potassium level and increased glial potassium uptake. Unlike TBOA, DHK did not enhance the tail current but rather inhibited it. This result suggests that, in addition to inhibiting glutamate transport, DHK prevents astrocyte potassium uptake, possibly by blockade of inward-rectifier channels. This study revealed that, in brain slices, glutamate transporter inhibitors exert complex effects that cannot be attributed solely to glutamate transport inhibition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we study under which circumstances there exists a general change of gross variables that transforms any FokkerPlanck equation into another of the OrnsteinUhlenbeck class that, therefore, has an exact solution. We find that any FokkerPlanck equation will be exactly solvable by means of a change of gross variables if and only if the curvature tensor and the torsion tensor associated with the diffusion is zero and the transformed drift is linear. We apply our criteria to the Kubo and Gompertz models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the Hamiltonian formulation of predictive relativistic systems, the canonical coordinates cannot be the physical positions. The relation between them is given by the individuality differential equations. However, due to the arbitrariness in the choice of Cauchy data, there is a wide family of solutions for these equations. In general, those solutions do not satisfy the condition of constancy of velocities moduli, and therefore we have to reparametrize the world lines into the proper time. We derive here a condition on the Cauchy data for the individuality equations which ensures the constancy of the velocities moduli and makes the reparametrization unnecessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In a recent paper, Komaki studied the second-order asymptotic properties of predictive distributions, using the Kullback-Leibler divergence as a loss function. He showed that estimative distributions with asymptotically efficient estimators can be improved by predictive distributions that do not belong to the model. The model is assumed to be a multidimensional curved exponential family. In this paper we generalize the result assuming as a loss function any f divergence. A relationship arises between alpha connections and optimal predictive distributions. In particular, using an alpha divergence to measure the goodness of a predictive distribution, the optimal shift of the estimate distribution is related to alpha-covariant derivatives. The expression that we obtain for the asymptotic risk is also useful to study the higher-order asymptotic properties of an estimator, in the mentioned class of loss functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We face the problem of characterizing the periodic cases in parametric families of (real or complex) rational diffeomorphisms having a fixed point. Our approach relies on the Normal Form Theory, to obtain necessary conditions for the existence of a formal linearization of the map, and on the introduction of a suitable rational parametrization of the parameters of the family. Using these tools we can find a finite set of values p for which the map can be p-periodic, reducing the problem of finding the parameters for which the periodic cases appear to simple computations. We apply our results to several two and three dimensional classes of polynomial or rational maps. In particular we find the global periodic cases for several Lyness type recurrences

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies non-autonomous Lyness type recurrences of the form x_{n+2}=(a_n+x_n)/x_{n+1}, where a_n is a k-periodic sequence of positive numbers with prime period k. We show that for the cases k in {1,2,3,6} the behavior of the sequence x_n is simple(integrable) while for the remaining cases satisfying k not a multiple of 5 this behavior can be much more complicated(chaotic). The cases k multiple of 5 are studied separately.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper studies non-autonomous Lyness type recurrences of the form xn+2 = (an+xn+1)=xn, where fang is a k-periodic sequence of positive numbers with primitive period k. We show that for the cases k 2 f1; 2; 3; 6g the behavior of the sequence fxng is simple (integrable) while for the remaining cases satisfying this behavior can be much more complicated (chaotic). We also show that the cases where k is a multiple of 5 present some di erent features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

En tot cas, jo voldria que aquesta conferència fos això que he dit: una breu lliçó sobre la importància de les equacions diferencials. Parlaré d'elles des de el punt de vista del models, és a dir, dels fenòmens que modelitzeu. I intentaré explicar que malgrat el seu origen antic, totes elles segueixen presentant avui en dia problemes nous i interessants, tant des de el punt de vista teòric com pràctic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The velocity of a liquid slug falling in a capillary tube is lower than predicted for Poiseuille flow due to presence of menisci, whose shapes are determined by the complex interplay of capillary, viscous, and gravitational forces. Due to the presence of menisci, a capillary pressure proportional to surface curvature acts on the slug and streamlines are bent close to the interface, resulting in enhanced viscous dissipation at the wedges. To determine the origin of drag-force increase relative to Poiseuille flow, we compute the force resultant acting on the slug by integrating Navier-Stokes equations over the liquid volume. Invoking relationships from differential geometry we demonstrate that the additional drag is due to viscous forces only and that no capillary drag of hydrodynamic origin exists (i.e., due to hydrodynamic deformation of the interface). Requiring that the force resultant is zero, we derive scaling laws for the steady velocity in the limit of small capillary numbers by estimating the leading order viscous dissipation in the different regions of the slug (i.e., the unperturbed Poiseuille-like bulk, the static menisci close to the tube axis and the dynamic regions close to the contact lines). Considering both partial and complete wetting, we find that the relationship between dimensionless velocity and weight is, in general, nonlinear. Whereas the relationship obtained for complete-wetting conditions is found in agreement with the experimental data of Bico and Quere [J. Bico and D. Quere, J. Colloid Interface Sci. 243, 262 (2001)], the scaling law under partial-wetting conditions is validated by numerical simulations performed with the Volume of Fluid method. The simulated steady velocities agree with the behavior predicted by the theoretical scaling laws in presence and in absence of static contact angle hysteresis. The numerical simulations suggest that wedge-flow dissipation alone cannot account for the entire additional drag and that the non-Poiseuille dissipation in the static menisci (not considered in previous studies) has to be considered for large contact angles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential geometry is used to investigate the structure of neural-network-based control systems. The key aspect is relative order—an invariant property of dynamic systems. Finite relative order allows the specification of a minimal architecture for a recurrent network. Any system with finite relative order has a left inverse. It is shown that a recurrent network with finite relative order has a local inverse that is also a recurrent network with the same weights. The results have implications for the use of recurrent networks in the inverse-model-based control of nonlinear systems.