54 resultados para CSRe
Resumo:
Rammed earth is a monolithic construction and the construction process involves compaction of processed soil in progressive layers in a rigid formwork. Durable and thinner load bearing walls can be built using stabilised rammed earth. Use of inorganic additives such as cement for rammed earth walls has been in practice since the last 5-6 decades and cement stabilised rammed earth (CSRE) buildings can be seen across the world. The paper deals with the construction aspects, structural design and embodied energy analysis of a three storey load bearing school building complex. The CSRE school complex consists of 15 classrooms, an open air theatre and a service block. The complex has a built-up area of 1691.3 m(2) and was constructed employing manual construction techniques. This case study shows low embodied energy of 1.15 GJ/m(2) for the CSRE building as against 3-4 GJ/m(2) for conventional burnt clay brick load bearing masonry buildings. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
RF system of HIRFL-CSRe(cooling storage experimental ring)was designed by ourselves and manufactured domestically,which operates in the frequency range of 0.5~2.0 MHz at first and second harmonic modes.Based on detailed engineering calculation,the design of RF generator was completed.It will work not only in CW mode but also in the mode of ramping pulse modulation,and the maximum power is up to 70 kW.It satisfies the requirement of 10 kV maximum deceleration voltage to capture the irradiative beam and decel...中文摘要:对兰州重离子加速器冷却储存环实验环(CSRe)的高频系统功率源的设计作了详细的工程计算,工作频率范围为0.5~2.0MHz,工作于基波及二次谐波模式,发射机不仅能工作于点频连续波模式,而且还可以工作在扫频调制模式,输出最大功率达到70kW。满足最高加速或减速电压10kV的设计要求,能够用于捕获放射性次级束并将束流的能量从400MeV/u减速到30MeV/u。
Resumo:
HIRFL-CSR, a new heavy ion cooler-storage-ring system at IMP, had been in commissioning since the beginning of 2006. In the two years of 2006 and 2007 the CSR commissioning was finished, including the stripping injection (STI), electron-cooling with hollow electron beam, C-beam stacking with the combination of STI and e-cooling, the wide energy-range synchrotron ramping from 7 MeV/u to 1000 MeV/u by changing the RF harmonic-number at mid-energy, the multiple multi-turn injection (MMI), the beam accumulation with MMI and e-cooling for heavy-ion beams of Ar, Kr and Xe, the fast extraction from CSRm and single-turn injection to CSRe, beam stacking in CSRe and the RIBs mass-spectrometer test with the isochronous mode in CSRe by using the time-of-flight method.
Resumo:
能量达千兆电子伏的兰州重离子加速器冷却储存环HIRFL-CSR,是一个集加速、累积、电子冷却及内外靶实验于一体的多功能双冷却储存环同步加速器系统,由主环CSRm和实验环CSRe构成,并以兰州重离子回旋加速器系统HIRFL作注入器。CSR将重离子束的能量从兆电子伏提高到千兆电子伏,同时利用空心电子束冷却技术将束流的动量分散及发射度降低1~2个数量级,并提供多种类的高电荷态重离子束以及放射性次级束(RIBs),以开展更高精度的物理实验及更广范围的应用研究。兰州冷却储存环于2006年建成并投入运行,实现了剥离注入与多圈注入、空心电子束对重离子束的冷却与累积、变谐波宽能区同步加速、等时性环型谱仪、RIBs的产生与收集以及重离子束的快慢引出,并实现了高能重离子束的空心电子束冷却,使得重离子束的动量分散降低到10-5量级,而发射度收缩到0.1πmm.mrad以下。同时,完成了短寿命近滴线核素的高分辨质量测量物理实验及高能重离子束深层治癌的临床应用实验。
Resumo:
兰州重离子加速器冷却储存环(HIRFL-CSR)是我国自主设计建造的第一个大规模、高能量、全离子加速的重离子冷却储存环系统,属国家"九五"重大科学工程。它利用原有的兰州重离子回旋加速器系统(HIRFL)作注入器,采取主环CSRm与实验环CSRe耦合的双环结构,可将重离子束的能量从1—100MeV/u的低中能区提高到500—1000MeV/u高能区。同时利用空心电子束冷却技术将束流品质提高一个数量级,并提供包括放射性束RIBs在内的更多种类的重离子束,用以开展范围更广、精度更高的物理实验,是一个开展多学科交叉研究的大科学平台。2000年4月HIRFL-CSR工程由原国家计委批准开工建设,总投资2.935亿元;2005年9月建成并开始试运行;2008年7月30日通过国家验收且正式投入运行。验收意见指出,HIRFL-CSR工程全面优质完成了建设任务,实现了验收指标,其中主环加速碳、氩束流的能量和流强超过了设计指标,总体性能达到了国际先进水平。
Resumo:
对兰州重离子加速器冷却储存环实验环(CSRe)的高频系统功率源的设计作了详细的工程计算,工作频率范围为0.5~2.0MHz,工作于基波及二次谐波模式,发射机不仅能工作于点频连续波模式,而且还可以工作在扫频调制模式,输出最大功率达到70kW。满足最高加速或减速电压10kV的设计要求,能够用于捕获放射性次级束并将束流的能量从400MeV/u减速到30MeV/u。
Resumo:
兰州重离子加速器冷却储存环HIRFL-CSR,是一个多用途、多功能的双冷却储存环同步加速器系统,由主环CSRm和实验环CSRe构成,并以兰州重离子级联回旋加速器HIRFL作注入器。CSR利用高频变谐波的方法,将重离子束的能量从7~25 MeV/u同步加速到200~1 000 MeV/u,同时利用重离子储存环中空心电子束冷却技术将束流品质提高1个数量级,并通过储存环的快引出及慢引出,提供多种类的重离子束以及放射性次级束(RIBs),以开展范围更广精度更高的物理实验。该装置于2007年投入运行,已取得了重要的运行结果,如实现了剥离注入与多圈注入、空心电子束对重离子束的冷却与累积、变谐波宽能区同步加速、等时性环型谱仪、RIBs的产生收集与ToF高分辨质量测量以及高能重离子束的变能慢引出等。
Resumo:
为实现CSRe试验环磁铁电源的控制同步,采用32位ARM内核芯片技术结合DSP控制板方式,稳定可靠地实现控制数据流的传输和同步事例的收发。同时通过CPLD逻辑时序编程来设计eVME背板总线系统。本系统用嵌入式网络和并行总线技术可靠稳定实现数据的快速获取与给定。
Resumo:
电子冷却装置中,电子束纵向温度是计算冷却力的主要参量之一.当电子与被冷却离子的相对速度很小时,纵向冷却力与离子速度呈线性关系,并且线性区域的宽度与电子束纵向温度有关.通过分析影响电子束纵向温度的主要因素,得到了兰州重离子冷却储存环实验环(CSRe)电子冷却装置中电子束纵向温度的大小.
Resumo:
兰州重离子冷却环CSR是兰州重离子加速器研究装置HRRFL的一项升级工程,是一个双冷却储存环系统,由主环CSRm和实验环CSRe构成.从HIRFL回旋加速器系统来的重离子束,首先注入到主环CSRm中进行累积冷却,然后加速到较高的能量引出打初级靶产生放射线次级束RIBs或高离化重离子束,这些次级束再被送到验环CSRe储存起来以开展内靶实验.
Resumo:
介绍了兰州重离子冷却储存环主环(CSRm)的改进W型二极磁铁和实验环(CSRe)C型二极磁铁的磁场计算和物理设计,在降低了磁铁造价和运行费用的前提下设计参数达到或超过了物理要求.根据样机的加工和检测结果来看,所有的磁场计算和物理设计的结果是可靠的.
Resumo:
兰州重离子加速器冷却储存环(HIRFL CSR)由一个主环(CSRm)和实验环(CSRe)构成.两个储存环的束流注入与引出都需要借助于切割磁铁的导向来完成.介绍了CSR的切割磁铁的物理设计和二维场计算.
Resumo:
The construction and commissioning of HIRFL-CSR were finished in 2007. From 2000 to 2005 the subsystem and key devices of CSR were successfully fabricated, such as magnet, power supply, UHV system, e-cooler, electric-static deflector with the septum of 0.1 mm, and the fast-pulse kicker with the rise time of 150 ns. After that the CSR commissioning activities were performed in 2006 and 2007, including the accumulation of those heavy ions of C, Ar, Kr and Xe by the combination of stripping injection (STI) or multiple multi-turn injection (MMI) and e-cooling with a hollow e-beam, wide energy-range synchrotron ramping by changing the RF harmonic-number at mid-energy, the beam stacking in the experimental ring CSRe, the RIBs mass-measurement with the isochronous-mode in CSRe by using the time-of-flight method, and the ion beam slow-extraction from CSRm.
Resumo:
Cooler Storage Ring (CSR) of Heavy Ion Research Facility in Lanzhou (HIRFL) consists of a main ring (CSRm) and an experimental ring (CSRe). Two particular C-type dipoles with embedded windings are used in the injection beam line of CSRm. They also act as the prototype dipoles of CSRe. The windings are designed to improve the field quality by their trimming current. The current impacts on field homogeneity and multipole components are investigated by a hall sensor and a long coil, respectively. The experiment shows that a field homogeneity of +/- 1.0 x 10(-3) can be reached by adjusting the trimming currents, though the multipole components change correspondingly. In our case, the quadrupole component is decreased to a low level with the octupole, decapole and 12-pole ones increased slightly when the trimming current is optimized.
Resumo:
The magnet design, fabrication, and measurement of HIRFL-CSR (Heavy Ion Research Facility in Lanzhou Cooling Storage Ring) are presented. All magnets will be laminated And welded with an armor-coated surface between two big endplates made of sticking glue 0.5 mm-thick sheets. The dipole of CSRm was chosen an H type with an air circle on the pole to improve the field uniformity. The dipole of CSRe was chosen the C type with an air circle and two air slots on the pole to improve the field homogeneity. Its reproducibility of magnet to magnet was adjusted with inserting small laminating pieces before demountable pole ends to reach less than +/- 2 x 10(-4) at optimized field level. CSRm quadrupoles diameter is 170 mm and has two different lengths, and its endplates were made with punching pieces after coating with epoxy glue, there is chamfered directly on the pole ends to reduce 12th-order contribution of field and without the demountable pole ends. CSRe main quadrupoles diameter is 240 mm and has two different lengths, and its endplates were also made with punching pieces coated with epoxy glue, there is also chamfered directly on the pole ends to reduce 12th-order contribution of field like CSRm.