1000 resultados para C. nitida
Resumo:
Sea-surface temperature (SST) estimates in the sediment core MD01-2390 based on planktonic foraminiferal species abundances using five different transfer function techniques suggest nearly unchanged or unusually higher temperatures in the tropical southern South China Sea (SCS) during the Last Glacial Maximum (LGM) relative to modern temperatures. These results are in contrast to substantial cooling of 2-5 °C inferred by geochemical (Uk'37, Mg/Ca ratios) and terrestrial proxies from the western tropical Pacific region. Using multivariate statistics we show that the glacial southern SCS harboured unique planktonic foraminiferal assemblages that have no modern analogs. Analyses of faunal variation through the core reveal that planktonic foraminiferal assemblages responded to temperature changes inferred from Mg/Ca data but that this signal is subdued by superimposed variations in the relative abundance of Pulleniatina obliquiloculata and Neogloboquadrina pachyderma (dextral). These species occur in glacial samples at proportions that are not observed in the calibration data set. The glacial high abundance of N. pachyderma (dextral) are interpreted to reflect a seasonal (winter) inflow of cold surface water from the northeast via the Bashi Strait due to the combined effects of an intensified winter monsoon, a southward shift of the polar front and the eastward migration of the Kuroshio Current. In contrast, processes controlling the high relative abundances of P. obliquiloculata during the LGM may be unique to the southern SCS. We propose a scenario involving a stronger (winter) mixing or enhanced upwelling due to an intensified winter monsoon that prevented shallow-dwelling, warm indicators to establish larger populations during the LGM. Our results indicate that a no-analog behaviour of planktonic foraminifera faunas is responsible for the warm glacial conditions in this part of the western Pacific warm pool as implied by foraminiferal transfer functions and that a more significant surface cooling in the region as implied by terrestrial and geochemical (Mg/Ca ratios; alkenone unsaturation index) marine proxies is a more likely scenario.
Resumo:
The biostratigraphy of Miocene-age sediment samples recovered from Ocean Drilling Program Sites 1143 and 1146, South China Sea, is presented. The preservation of the planktonic foraminifers recovered from both sites varies widely, from poor to very good. The volume of biogenic sediment in the >63-µm size fraction also varies considerably, with many samples being dominated by mud. In comparison to shipboard biostratigraphy, based on core catcher analyses with a depth resolution of ~10 m, we analyzed samples from the two stratigraphic columns every 2-3 m (~45- to 93-k.y. resolution). The placement of planktonic foraminifer zonal boundaries was made at a resolution of ~1.5 m at Site 1146 and ~3.0 m at Site 1143. The higher resolution has resulted in significant changes in biostratigraphic zonal boundary locations compared to shipboard results. For the time interval of 5.54-10.49 Ma, the changes in zonation reveal similar age-depth models at both sites, with three segments of changing sedimentation rate through the upper Miocene, though the differences in sedimentation rates at Site 1146 are subtler than those at Site 1143. The boundary between lithologic Units II and III at Site 1146 corresponds to a sharp change in sedimentation rate (58 to 21 m/m.y.) at 15.1 Ma (the first occurrence of Orbulina suturalis). At this site, the interval from 16.4 to 15.1 Ma is characterized by very high mass accumulation rates in the noncarbonate fraction. Above this interval the carbonate fraction becomes increasingly important in the sediment flux to the South China Sea. At Site 1143, sedimentation rates increase from 8 to 99 m/m.y. at 8.6 Ma. This corresponds to a dramatic increase in both carbonate and noncarbonate mass accumulation rates at the site, but no change in lithology.
Resumo:
Detailed biostratigraphy in Site 1006 based on planktonic foraminifers and nannofossils shows large-scale sedimentation rate variability in the Florida Strait west of the Great Bahama Bank. A 'floating' cyclostratigraphy based mainly on resistivity logs and magnetic susceptibility data has been fixed to the biostratigraphy in the absence of magnetostratigraphy. The strongest orbital cycle present is the precessional beat, which is present in the borehole logs throughout the record. Counting the cycles resulted in an accurate time scale and thus a sedimentation rate time series. Spectral analysis of the sedimentation rate time series shows that the short-term cycle of eccentricity (~125 k.y.) and the long term cycle of eccentricity (~400 k.y.) are pervasive throughout the Miocene record, together with the long-term ~2-m.y. eccentricity cycle. The Great Bahama Bank produced pulses of shallow carbonate input once every precessional (sea level) cycle during the Miocene and perhaps two pulses per cycle in the early Pliocene. The amount of sediment exported in these pulses appears to be controlled by eccentricity modulation of the precessional amplitude and therefore the amplitude of the sea-level rise. Finally, an increase in sedimentation rate just after the Miocene/Pliocene boundary is attributed to a change in the location and strength of sediment drift currents in the Florida Strait due to reorganization of the currents following the closure of the Panama Isthmus.
Resumo:
Tropical planktonic foraminifers occur throughout the sequences at all sites of Leg 85, and the standard planktonic foraminiferal zonation of Blow (1969) is applicable to most of the recovered sequences. However, the abundance and state of preservation of foraminifers decline markedly in certain intervals because of the effects of dissolution. Although siliceous microfossils studied on this leg indicate recovery of nearly complete records for the Pleistocene to Oligocene interval, the planktonic foraminiferal biostratigraphy is interrupted by strongly dissolved sections at all sites. Particularly, faunas assignable to Zone N7 (early Miocene) and Zone N15-16 (early late Miocene) are almost totally unrecognizable throughout the eastern equatorial Pacific. Well-preserved and diverse planktonic foraminifers occur in the lower middle Miocene, where the evolutionary developments of Orbulina universa d'Orbigny and Globorotalia fohsi Cushman and Ellisor are well represented. The Orbulina first appearance datum is observed to be nearly coincident with the last occurrence level of the diatom Annellus californicus Tempère, thus .establishing an age of 15 Ma for this datum by using the paleomagnetic calibration of the diatom datum. Moderately well-preserved late Eocene planktonic foraminifers occur in the carbonate sediments immediately overlying the basalt basement at Sites 573 and 574. The Eocene-Oligocene faunal transition, however, is masked at both sites by an intercalation of metalliferous layers containing no planktonic foraminifers.
Resumo:
Uniquely in the Southern Hemisphere the New Zealand micro-continent spans the interface between a subtropical gyre and the Subantarctic Circumpolar Current. Its 20° latitudinal extent includes a complex of submerged plateaux, ridges, saddles and basins which, in the present interglacial, are partial barriers to circulation and steer the Subtropical (STF) and Subantarctic (SAF) fronts. This configuration offers a singular opportunity to assess the influence of bottom topography on oceanic circulation through Pleistocene glacial - interglacial (G/I) cycles, its effect on the location and strength of the fronts, and its ability to generate significant differences in mixed layer thermal history over short distances. For this study we use new planktic foraminiferal based sea-surface temperature (SST) estimates spanning the past 1 million years from a latitudinal transect of four deep ocean drilling sites. We conclude that: 1. the effect of the New Zealand landmass was to deflect the water masses south around the bathymetric impediments; 2. the effect of a shallow submerged ridge on the down-current side (Chatham Rise), was to dynamically trap the STF along its crest, in stark contrast to the usual glacial-interglacial (G-I) meridional migration that occurs in the open ocean; 3. the effect of more deeply submerged, downstream plateaux (Campbell, Bounty) was to dynamically trap the SAF along its steep southeastern margin; 4. the effects of saddles across the submarine plateaux was to facilitate the development of jets of subtropical and subantarctic surface water through the fronts, forming localized downstream gyres or eddies during different phases in the G-I climate cycles; 5. the deep Pukaki Saddle across the Campbell-Bounty Plateaux guided a branch of the SAF to flow northwards during each glacial, to form a strong gyre of circumpolar surface water in the Bounty Trough, especially during the mid-Pleistocene Climate Transition (MIS 22-16) when exceptionally high SST gradients existed across the STF; 6. the shallower Mernoo Saddle, at the western end of the Chatham Rise, provided a conduit for subtropical water to jet southwards across the STF in the warmest interglacial peaks (MIS 11, 5.5) and for subantarctic water to flow northwards during glacials; 7. although subtropical or subantarctic drivers can prevail at a particular phase of a G-I cycles, it appears that the Antarctic Circumpolar Current is the main influence on the regional hydrography. Thus complex submarine topography can affect distinct differences in the climate records over short distances with implications for using such records in interpreting global or regional trends. Conversely, the local topography can amplify the paleoclimate record in different ways in different places, thus enhancing its value for the study of more minor paleoceanographic influences that elsewhere are more difficult to detect. Such sites include DSDP 594, which like some other Southern Ocean sites, has the typical late Pleistocene asymmetrical saw-tooth G-I climate pattern transformed to a gap-tooth pattern of quasi-symmetrical interglacial spikes that interrupt extended periods of minimum glacial temperatures.
Resumo:
The timing and magnitude of sea-surface temperature (SST) changes in the tropical southern South China Sea (SCS) during the last 16,500 years have been reconstructed on a high-resolution, 14C-dated sediment core using three different foraminiferal transfer functions (SIMMAX28, RAM, FP-12E) and geochemical (Uk'37) SST estimates. In agreement with CLIMAP reconstructions, both the FP-12E and the Uk'37 SST estimates show an average late glacial-interglacial SST difference of 2.0°C, whereas the RAM and SIMMAX28 foraminiferal transfer functions show only a minor (0.6°C) or no consistent late glacial-interglacial SST change, respectively. Both the Uk'37 and the FP-12E SST estimates, as well as the planktonic foraminiferal delta18O values, indicate an abrupt warming (ca. 1°C in <200 yr) at the end of the last glaciation, synchronous (within dating uncertainties) with the Bølling transition as recorded in the Greenland Ice Sheet Project 2 (GISP2) ice core, whereas the RAM-derived deglacial SST increase appears to lag during this event by ca. 500 yr. The similarity in abruptness and timing of the warming associated with the Bølling transition in Greenland and the southern SCS suggest a true synchrony of the Northern Hemisphere warming at the end of the last glaciation. In contrast to the foraminiferal transfer function estimates that do not indicate any consistent cooling associated with the Younger Dryas (YD) climate event in the tropical SCS, the Uk'37 SST estimates show a cooling of ca. 0.2-0.6°C compared to the Bølling-Allerød period. These Uk'37 SST estimates from the southern SCS argue in favor of a Northern Hemisphere-wide, synchronous cooling during the YD period.
Resumo:
Changes in surface water hydrography in the Southern Ocean (eastern Atlantic sector) could be reconstructed on the basis of isotope-geochemical and micropaleontological studies. A total of 75 high quality multicorer sediment surface samples from the southern South Atlantic Ocean and three Quaternary sediment cores, taken on a meridional transect across the Antarctic Circumpolar Current, have been investigated. The results of examining stable oxygen isotope compositions of 24 foraminiferal species and morphotypes were compared to the near-surface hydrography. The different foraminifera have been divided into four groups living at different depths in the upper water column. The 8180 differences between shallow-living (e.g. G. bulloides, N. pachyderma) and deeper-dwelling (e. g. G. inflata) species reflect the measured temperature gradient of the upper 250 m in the water column. Thus, the 6180 difference between shallow-living and deeper-living foraminifera can be used as an indicator for the vertical temperature gradient in the surface water of the Antarctic Circumpolar Current, which is independent of ice volume. All planktonic foraminifera in the surface sediment samples have been counted. 27 species and morphotypes have been selected, to form a reference data Set for statistical purposes. By using R- and Q-mode principal component analysis these planktonic foraminifera have been divided into four and five assemblages, respectively. The geographic distribution of these assemblages is mainly linked to the temperature of sea-surface waters. The five assemblages (factors) of the Q-mode principal component analysis account for 97.l % of the variance of original data. Following the transferfunction- technique a multiple regression between the Q-mode factors and the actual mean sea-surface environmental parameters resulted in a set of equations. The new transfer function can be used to estimate past sea-surface seasonal temperatures for paleoassemblages of planktonic foraminifera with a precision of approximately ±1.2°C. This transfer function F75-27-5 encompasses in particular the environmental conditions in the Atlantic sector of the Antarctic Circumpolar Current. During the last 140,000 years reconstructed sea-surface temperatures fluctuated in the present northern Subantarctic Zone (PS2076-1/3) at an amplitude of up to 7.5°C in summer and of up to 8.5°C in winter. In the present Polarfrontal Zone (PS1754-1) these fluctuations between glacials and interglacials show lower temperatures from 2.5 to 8.5°C in summer and from 1.0 to 5.0°C in winter, respectively. Compared to today, calculated oxygen isotope temperature gradients in the present Subantarctic Zone were lower during the last 140,000 years. This is an indicator for a good mixing of the upper water column. In the Polarfrontal Zone also lower oxygen isotope temperature gradients were found for the glacials 6, 4 and 2. But almost similar temperature gradients as today were found during the interglacial stages 5, 3 and the Holocene, which implicates a mixing of the upper water column compared to present. Paleosalinities were reconstructed by combining d18O-data and the evaluated transfer function paleotemperatures. Especially in the present Polarfrontal Zone (PS1754-1) and in the Antarctic Zone (PS1768-8), a short-term reduction of salinity up to 4 %o, could be detected. This significant reduction in sea-surface water salinity indicates the increased influx of melt-water at the beginning of deglaciation in the southern hemisphere at the end of the last glacial, approximately 16,500-13,000 years ago. The reconstruction of environmental Parameters indicates only small changes in the position of the frontal Systems in the eastern sector of the Antarctic Circumpolar Current during the last 140,000 years. The average position of the Subtropical Front and Subantarctic Front shifted approximately three latitudes between interglacials and glacials. The Antarctic Polar Front shifted approximately four latitudes. But substantial modifications of this scenario have been interpreted for the reconstruction of cold sea-surface temperatures at 41Â S during the oxygen isotope stages 16 and 14 to 12. During these times the Subtropical Front was probably shified up to seven latitudes northwards.
Resumo:
Over 30 first and last occurrence (FO and LO, respectively) planktonic foraminifer datums were recognized from the Oligocene-Miocene section of Ocean Drilling Program (ODP) Site 1148. Most datum levels occur in similar order as, and are by correlation as probably synchronous with, their open-ocean records. Several datum levels represent local bioevents resulting from dissolution and Site 1148's unique paleoceanographic setting in the northern South China Sea. An age of 9.5-9.8 Ma is estimated for the local LO of Globoquadrina dehiscens (257 meters composite depth [mcd]), whereas the local LO of Globorotalia fohsi s.l. (301 mcd) is projected to be at ~13.0 Ma and the local FO of Globigerinatella insueta (367 mcd) is projected to be at ~18.0 Ma. The combined planktonic foraminifer and nannofossil results indicate that the Oligocene-Miocene section at Site 1148 is not complete. Unconformities up to 2-3 m.y. in duration, occurring at and before the Oligocene/Miocene boundary (OHS1, OHS2, OHS3, and OHS4 = MHS1), are associated with slump deposits between 457 and 495 mcd that signal tectonic instability during the transition from rifting to spreading in the South China Sea. Shorter unconformities of <0.5 m.y. duration that truncate the Miocene section were more likely to have been caused by sea-bottom erosion as well as dissolution. A total of 12 Miocene unconformities, MHS1 through MHS12, are mainly affected by dissolution and an elevated carbonate compensation depth (CCD) during Miocene third-order glaciations recorded in deep-sea positive oxygen isotope Mi glaciation events. Respectively, they fall at ~457 mcd (MHS1 = Mi-1), 407 mcd (MHS2 = Mi-1a), 385 mcd (MHS3 = Mi-1aa), 366 mcd (MHS4 = Mi-1b), 358 mcd (MHS5 = MLi-1), 333 mcd (MHS6 = Mi-2), 318 mcd (MHS7 = MSi-1), 308 mcd (MHS8 = Mi-3), 295 mcd (MHS9 = Mi-4), 288 mcd (MHS10 = Mi-5), 256 mcd (MHS11 = Mi-6), and 250 mcd (MHS12 = Mi-7). The correlation of these unconformities with Mi events indicates that some related driving mechanisms have been operating, causing deepwater circulation changes concomitantly in world oceans and in the marginal South China Sea.
Resumo:
Paleoceanographic archives derived from 17 marine sediment cores reconstruct the response of the Southwest Pacific Ocean to the peak interglacial, Marine Isotope Stage (MIS) 5e (ca. 125?ka). Paleo-Sea Surface Temperature (SST) estimates were obtained from the Random Forest model-an ensemble decision tree tool-applied to core-top planktonic foraminiferal faunas calibrated to modern SSTs. The reconstructed geographic pattern of the SST anomaly (maximum SST between 120 and 132?ka minus mean modern SST) seems to indicate how MIS 5e conditions were generally warmer in the Southwest Pacific, especially in the western Tasman Sea where a strengthened East Australian Current (EAC) likely extended subtropical influence to ca. 45°S off Tasmania. In contrast, the eastern Tasman Sea may have had a modest cooling except around 45°S. The observed pattern resembles that developing under the present warming trend in the region. An increase in wind stress curl over the modern South Pacific is hypothesized to have spun-up the South Pacific Subtropical Gyre, with concurrent increase in subtropical flow in the western boundary currents that include the EAC. However, warmer temperatures along the Subtropical Front and Campbell Plateau to the south suggest that the relative influence of the boundary inflows to eastern New Zealand may have differed in MIS 5e, and these currents may have followed different paths compared to today.
Resumo:
An original method of paleotemperature analysis on planktonic foraminifera is substantiated and actively used for stratigraphy of bottom sediments and paleoceanologic reconstructions. On the base of this method, as well as on lithological, geochemical, and oxygen isotope data, radiocarbon dating, constructions of other investigators, etc., the main features of dynamic Quaternary paleoceanology of the Atlantic Ocean is reconstructed. It is discussed in the context of global paleogeography. Paleotemperature field, climatic zonation, paleoecology of foraminifera, position of the main water masses, water fronts, currents, distribution of sea ice boundaries, upwelling activity, benthic circulation, processes of sedimentation are econstructed and analyzed.
Resumo:
Recent clays cover the East Atlantic continental slopes. They are gray and poor in sand off Portugal (Cape Sines), but reddish brown to reddish gray and richer in sand off Morocco (Cape Mazagan). The majority of the 19 sediment cores, which were taken mainly on two profiles (Fig. 3), can be correlated by means of planktonic foraminifera (Figs. 27, 28). The following parameters seem to be well suited for this purpose: qualitative and quantitative distribution of the planktonic foraminiferal species and faunas, coiling ratios of three Globorotalia-species: G. crassaformis, G. hirsuta and G. truncatulinoides. Sediments from about 2000 m water depth show highest sedimentation rates off Portugal (> 20 cm/1000 yrs.), but off Morocco the lowest sedimentation rates (about 3 cm/1000 yrs.). The sediments are dated with planktonic foraminifera and 31 radiocarbon analyses and the stratigraphic interpretation is supported by the lithostratigraphy. Holocene faunas are distinguished from the Pleistocene ones by differences in species composition, lower dominances and higher diversities. The Holocene sediments show smaller differences of the foraminiferal numbers than the Pleistocene ones. During Holocene and Pleistocene the temperatures of the surface water masses (indicated by the planktonic foraminiferal faunas) show similar values nearshore and offshore off Morocco. Likewise, there is no apparent temperature gradient in the Pleistocene off Portugal; whereas here values increase offshore during the Holocene. The proportion of species indicating warmer water masses is generally higher off Morocco. The plankton/benthos ratio increases with water depth and reaches maximum values already at about 1000 m. The production rate for planktonic foraminifera is higher in the continental slope regions than in the open ocean, but their shells show typical solution phenomena already in water depths of less than 1000 m. A higher solutional rate was found in sediments from the Tagus Abyssal Plain, while sediments from Horse Shoe and Seine Abyssal Plain seem to be better preserved. In the Tagus Abyssal Plain solution is less important during late Pleistocene than during Holocene.
Resumo:
Paleotemperature estimates calculated by the SIMMAX Modern Analog Technique are presented for two gravity cores from the Rio Grande Rise, one from the Brazil Slope, and one from the Ceara Rise. The estimates are based on comparisons between modern and fossil planktonic foraminiferal assemblages and were carried out on samples from Quaternary sediments. Estimated warm-season temperatures from the Rio Grande Rise (at approx. 30° S) range from around 19°C to 24°C, with some coincidence of warm peaks with interglacial stages. The temperature estimates (also warm-season) from the more tropical Brazil Slope (at approx. 8° S) and Ceara Rise (at approx. 4° N) cores are more stable, remaining between 26°C and 28°C throughout most of their lengths. This fairly stable situation in the tropical western Atlantic is interrupted in oxygen isotope stage 6 by a significant drop of 2-3°C in both of these cores. Temperature estimates from the uppermost samples in all cores compare very well to the modern-day measured values. Affinities of some foraminiferal species for warmer or cooler surface temperatures are identified within the temperature range of the examined samples based on their abundance values. Especially notable among the warmer species are, Globorotalia menardii, Globigerinita glutinata, Globigerinoides ruber, and Globigerinoides sacculifer. Species indicative of cooler surface temperatures include Globorotalia inflata, Globigerina bulloides, Neogloboquadrina pachyderma, and Globigerina falconensis. A cluster analysis was carried out to assist in understanding the degree of variation which occurs in the foraminiferal assemblages, and how temperature differences influence the faunal compositions of the samples. It is demonstrated that fairly similar samples may have unexpectedly different estimated temperatures due to small differences in key species and, conversely, quite different assemblages can result in similar or identical temperature estimates which confirms that other parameters than just temperature affect faunal content.
Resumo:
The stable isotopic composition of two planktonic foraminifer species (Globigerinoides sacculifer and Neogloboquadrina dutertrei) and two benthic foraminifer species (Cibicidoides wuellerstorfi and Uvigerina peregrina) was measured at sub-orbital resolution through the marine isotope stages (MISs) 10, 11, and 12 (345-460 ka) at Site 1056 on the Blake-Bahama Outer Ridge. Planktonic foraminifers were counted for the interval 405-450 ka at 2-4-kyr resolution. Site 1056 (32°29'N, 76°20'W) is located on the continental slope (water depth: 2167 m) beneath the Gulf Stream. The average rate of sediment accumulation through the interval is 11.4 cm/kyr, but sediment accumulation is much more rapid during glacial intervals (15-17 cm/kyr). The decline in percent carbonate during glacial intervals, and its rise during interglacials, indicates that the increased sediment supply is of terrigenous origin. Low carbonate values and low benthic delta13C, which are both associated with a weak Western Boundary Undercurrent and low North Atlantic Deep Water production, persist for 6 kyr after the benthic delta18O record indicates that ice volume has begun to decrease. Recovery of carbonate and benthic delta13C values is abrupt and rapid. Millennial-scale variation (~3-4 kyr) is apparent in the glacial intervals of the planktonic delta18O records and is more pronounced in a Delta delta18O record, which represents the temperature range in the photic zone. Semi-precessional (10-12-kyr) cycles are apparent in the planktonic deltadelta13C record. The millennial-scale cycles are largely caused by an increase in G. sacculifer delta18O and represent surface warming. They are interpreted as representing periodic increases in westward intensification of the gyre. The semi-precessional cycles are driven by changes in the N. dutertrei delta13C and represent fluctuations in the Gulf Stream itself and therefore likely have a tropical origin. Planktonic foraminifer census counts did not show an expected response to one of the largest glacial/interglacial transitions of the late Pleistocene. The most obvious change was an increase in faunal diversity during MIS 12.2, the interval of maximum delta18O values. This suggests that cool slope water and warm subtropical gyre water penetrated a more sluggish Gulf Stream with greater frequency at this time. The millennial-scale maxima in the Delta delta18O record are accompanied by decreases in diversity, which is consistent with the interpretation of surface warming during these events.
Resumo:
A uniform chronology for foraminifera-based sea surface temperature records has been established in more than 120 sediment cores obtained from the equatorial and eastern Atlantic up to the Arctic Ocean. The chronostratigraphy of the last 30,000 years is mainly based on published d18O records and 14C ages from accelerator mass spectrometry, converted into calendar-year ages. The high-precision age control provides the database necessary for the uniform reconstruction of the climate interval of the Last Glacial Maximum within the GLAMAP-2000 project.