999 resultados para Amorphous semiconductor
Resumo:
The formation of heterojunctions between two crystals with different band gap structures, acting as a tunnel for the unidirectional transfer of photo-generated charges, is an efficient strategy to enhance photocatalytic performance in semiconductor photocatalysts. The heterojunctions may also promote the photoactivity in the visible-light-response of any surface complex catalysts by influencing the transfer of photo-generated electrons. Herein, Nb2O5 microfibers, with a high surface area of interfaces between an amorphous phase and crystalline phase, were designed and synthesised by the calcination of hydrogen-form niobate while controlling the crystallization The photoactivity of these microfibers towards selective aerobic oxidation reactions was investigated. As predicted, the Nb2O5 microfibres containing heterojunctions exhibited the highest photoactivity. This could be due to the band gap difference between the amorphous phase and the crystalline phase, which shortened the charge mobile distance and improved the efficiency.
Resumo:
Amorphous hydrogenated silicon (a-Si:H) is well-known material in the global semiconductor industry. The quality of the a-Si:H films is generally decided by silicon and hydrogen bonding configuration (Si-H-x, x=1,2) and hydrogen concentration (C-H). These quality aspects are correlated with the plasma parameters like ion density (N-i) and electron temperature (T-e) of DC, Pulsed DC (PDC) and RF plasmas during the sputter-deposition of a-Si:H thin films. It was found that the N-i and T-e play a major role in deciding Si-H-x bonding configuration and the C-H value in a-Si:H films. We observed a trend in the variation of Si-H and Si-H-2 bonding configurations, and C-H in the films deposited by DC, Pulsed DC and RF reactive sputtering techniques. Ion density and electron energy are higher in RF plasma followed by PDC and DC plasma. Electrons with two different energies were observed in all the plasmas. At a particular hydrogen partial pressure, RF deposited films have higher C-H followed by PDC and then DC deposited films. The maximum energy that can be acquired by the ions was found to be higher in RF plasma. Floating potential (V-f) is more negative in DC plasma, whereas, plasma potential (V-p) is found to be more positive in RF plasma. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Mechanical properties of thin films such as residual stress and hardness are of paramount importance from the device fabrication point of view. Intrinsic stress in sputtered films can be tensile or compressive as decided by the number density and the energy of the plasma species striking the growing film. In the presence of hydrogen we analyzed the applicability of idealized stress reversal curve for amorphous silicon thin films deposited by DC, pulsed DC (PDC) and RF sputtering. We are successfully able to correlate the microstructure with the stress reversal and hardness. We observed a stress reversal from compressive to tensile with hydrogen incorporation. It was found that unlike in idealized stress reversal curve case, though the energy of plasma species is less in DC plasma, DC deposited films exhibit more compressive stress, followed by PDC and RF deposited films. A tendency towards tensile stress from compressive stress was observed at similar to 13, 18 and 23 at%H for DC, PDC and RF deposited films respectively, which is in exact agreement with the vacancy to void transition in the films. Regardless of the sputtering power mode, the hardness of a-Si:H films is found to be maximum at C-H similar to 10 at%H. Enhancement in hardness with C-H (up to C-H similar to 10 at%H) is attributed to increase of Si-H bonds. Beyond C-H similar to 10 at%H, hardness starts falling. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
I. Schottky barriers produced by polymeric sulfur nitride, (SN)x, on nine common III-V and II-VI compound semiconductors are compared to barriers formed by Au. The conductor (SN)x produces significantly higher barriers to n-type semiconductors and lower barriers to p-type semiconductors than Au, the most electronegative elemental metal. The barrier height improvement, defined as ɸ(SN)x - ɸ(Au), is smaller on covalent semiconductors than on ionic semiconductors; (SN)x barriers follow the ionic-covalent transition. Details of (SN)x film deposition, samples preparation, and barrier height measurements are described.
II. The rate of dissolution of amorphous Si into solid Al is measured. The rate of movement of the amorphous Si/Al interface is found to be much faster than predicted by a simple model of the transport of Si through Al. This result is related to defects in the growth of epitaxial Si using the solid phase epitaxy process.
Resumo:
Films of Ti-Si-N obtained by reactively sputtering a TiSi_2, a Ti_5Si_3, or a Ti_3Si target are either amorphous or nanocrystalline in structure. The atomic density of some films exceeds 10^23 at./cm^3. The room-temperature resistivity of the films increases with the Si and the N content. A thermal treatment in vacuum at 700 °C for 1 hour decreases the resistivity of the Ti-rich films deposited from the Ti_5Si_3 or the Ti_3Si target, but increases that of the Si-rich films deposited from the TiSi_2 target when the nitrogen content exceeds about 30 at. %.
Ti_(34)Si_(23)N_(43) deposited from the Ti_5Si_3 target is an excellent diffusion barrier between Si and Cu. This film is a mixture of nanocrystalline TiN and amorphous SiN_x. Resistivity measurement from 80 K to 1073 K reveals that this film is electrically semiconductor-like as-deposited, and that it becomes metal-like after an hour annealing at 1000 °C in vacuum. A film of about 100 nm thick, with a resistivity of 660 µΩcm, maintains the stability of Si n+p shallow junction diodes with a 400 nm Cu overlayer up to 850 °C upon 30 min vacuum annealing. When used between Si and Al, the maximum temperature of stability is 550 °C for 30 min. This film can be etched in a CF_4/O_2 plasma.
The amorphous ternary metallic alloy Zr_(60)Al_(15)Ni_(25) was oxidized in dry oxygen in the temperature range 310 °C to 410 °C. Rutherford backscattering and cross-sectional transmission electron microscopy studies suggest that during this treatment an amorphous layer of zirconium-aluminum-oxide is formed at the surface. Nickel is depleted from the oxide and enriched in the amorphous alloy below the oxide/alloy interface. The oxide layer thickness grows parabolically with the annealing duration, with a transport constant of 2.8x10^(-5) m^2/s x exp(-1.7 eV/kT). The oxidation rate is most likely controlled by the Ni diffusion in the amorphous alloy.
At later stages of the oxidation process, precipitates of nanocrystalline ZrO_2 appear in the oxide near the interface. Finally, two intermetallic phases nucleate and grow simultaneously in the alloy, one at the interface and one within the alloy.
Resumo:
Hydrogenated amorphous silicon (a-Si:H) thin films have been deposited from silane using a novel photo-enhanced decomposition technique. The system comprises a hydrogen discharge lamp contained within the reaction vessel; this unified approach allows high energy photon excitation of the silane molecules without absorption by window materials or the need for mercury sensitisation. The film growth rates (exceeding 4 Angstrom/s) and material properties obtained are comparable to those of films produced by plasma-enhanced CVD techniques. The reduction of energetic charged particles in the film growth region should enable the fabrication of cleaner semiconductor/insulator interfaces in thin-film transistors.
Resumo:
Tetrahedrally bonded amorphous carbon (ta-C) is a new type of semiconducting thin film material. It can be produced at room temperature using the Filtered Cathodic Vacuum Arc technique. The as-grown undoped ta-C is p-type in nature but it can be n-doped by the addition of nitrogen during deposition. This paper will describe thin film transistor design and fabrication using ta-C as the active channel layer.
Resumo:
This paper reviews the advances that flash lamp annealing brings to the processing of the most frequently used semiconductor materials, namely silicon and silicon carbide, thus enabling the fabrication of novel microelectronic structures and materials. The paper describes how such developments can translate into important practical applications leading to a wide range of technological benefits. Opportunities in ultra-shallow junction formation, heteroepitaxial growth of thin films of cubic silicon carbide on silicon, and crystallization of amorphous silicon films, along with the technical reasons for using flash lamp annealing are discussed in the context of state-of-the-art materials processing. © 2005 IEEE.
Resumo:
The composition of amorphous oxide semiconductors, which are well known for their optical transparency, can be tailored to enhance their absorption and induce photoconductivity for irradiation with green, and shorter wavelength light. In principle, amorphous oxide semiconductor-based thin-film photoconductors could hence be applied as photosensors. However, their photoconductivity persists for hours after illumination has been removed, which severely degrades the response time and the frame rate of oxide-based sensor arrays. We have solved the problem of persistent photoconductivity (PPC) by developing a gated amorphous oxide semiconductor photo thin-film transistor (photo-TFT) that can provide direct control over the position of the Fermi level in the active layer. Applying a short-duration (10 ns) voltage pulse to these devices induces electron accumulation and accelerates their recombination with ionized oxygen vacancy sites, which are thought to cause PPC. We have integrated these photo-TFTs in a transparent active-matrix photosensor array that can be operated at high frame rates and that has potential applications in contact-free interactive displays. © 2012 Macmillan Publishers Limited. All rights reserved.
Resumo:
We present quantitative analysis of the ultra-high photoconductivity in amorphous oxide semiconductor (AOS) thin film transistors (TFTs), taking into account the sub-gap optical absorption in oxygen deficiency defects. We analyze the basis of photoconductivity in AOSs, explained in terms of the extended electron lifetime due to retarded recombination as a result of hole localization. Also, photoconductive gain in AOS photo-TFTs can be maximized by reducing the transit time associated with short channel lengths, making device scaling favourable for high sensitivity operation. © 2012 IEEE.
Resumo:
Electronic systems are a very good platform for sensing biological signals for fast point-of-care diagnostics or threat detection. One of the solutions is the lab-on-a-chip integrated circuit (IC), which is low cost and high reliability, offering the possibility for label-free detection. In recent years, similar integrated biosensors based on the conventional complementary metal oxide semiconductor (CMOS) technology have been reported. However, post-fabrication processes are essential for all classes of CMOS biochips, requiring biocompatible electrode deposition and circuit encapsulation. In this work, we present an amorphous silicon (a-Si) thin film transistor (TFT) array based sensing approach, which greatly simplifies the fabrication procedures and even decreases the cost of the biosensor. The device contains several identical sensor pixels with amplifiers to boost the sensitivity. Ring oscillator and logic circuits are also integrated to achieve different measurement methodologies, including electro-analytical methods such as amperometric and cyclic voltammetric modes. The system also supports different operational modes. For example, depending on the required detection arrangement, a sample droplet could be placed on the sensing pads or the device could be immersed into the sample solution for real time in-situ measurement. The entire system is designed and fabricated using a low temperature TFT process that is compatible to plastic substrates. No additional processing is required prior to biological measurement. A Cr/Au double layer is used for the biological-electronic interface. The success of the TFT-based system used in this work will open new avenues for flexible label-free or low-cost disposable biosensors. © 2013 Materials Research Society.
Crystallization of amorphous Si films by pulsed laser annealing and their structural characteristics
Resumo:
Nanocrystalline silicon (nc-Si) films were prepared by pulsed laser annealed crystallization of amorphous silicon (alpha-Si) films on SiO2-coated quartz or glass substrates. The effect of laser energy density on structural characteristics of nc-Si films was investigated. The Ni-induced crystallization of the a-Si films was also discussed. The surface morphology and microstructure of these films were characterized by scanning electron microscopy, high-resolution electron microscopy, atomic force microscopy and Raman scattering spectroscopy. The results show that not only can the alpha-Si films be crystallized by the laser annealing technique, but also the size of Si nanocrystallites can be controlled by varying the laser energy density. Their average size is about 4-6 nm. We present a surface tension and interface strain model used for describing the laser annealed crystallization of the alpha-Si films. The doping of Ni atoms may effectively reduce the threshold value of laser energy density to crystallize the alpha-Si films, and the flocculent-like Si nanostructures could be formed by Ni-induced crystallization of the alpha-Si films.
Resumo:
Field emission (FE) from a single-layer ultra-thin semiconductor film cathode (SUSC) on a metal substrate has been investigated theoretically. The self-consistent quantum FE model is developed by synthetically considering the energy band bending and electron scattering. As a typical example, we calculate the FE properties of ultra-thin A1N film with an adjustable film thickness from 1 to 10 nm. The calculated results show that the FE characteristic is evidently modulated by varying the film thickness, and there is an optimum thickness of about 3 nm. Furthermore, a four-step FE mechanism is suggested such that the distinct FE current of a SUSC is rooted in the thickness sensitivity of its quantum structure, and the optimum FE properties of the SUSC should be attributed to the change in the effective potential combined with the attenuation of electron scattering.
Resumo:
Tin disulfide (SnS2) nanocrystalline/amorphous blended phases were synthesized by mild chemical reaction. Both X-ray diffraction and transmission electron microscopy measurements demonstrate that the as-synthesized particles presented very small size, with a diameter of only a few nanometers. The photoluminescence (PL) spectrum suggests efficient splitting of photo-generated excitons in poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and SnS2 hybrid films. Organic/inorganic hybrid solar cells comprising MDMO-PPV and SnS2 were prepared, giving photovoltage, photocurrent, fill factor and efficiency values of 0.702 V, 0.549 mA/cm(2), 0.385 and 0.148%, respectively, which suggests that this phase-blended inorganic semiconductor can also serve as a promising solar energy material. (C) 2009 Elsevier Ltd. All rights reserved.