900 resultados para Algebraic functions.
Resumo:
The results in this paper are motivated by two analogies. First, m-harmonic functions in R(n) are extensions of the univariate algebraic polynomials of odd degree 2m-1. Second, Gauss' and Pizzetti's mean value formulae are natural multivariate analogues of the rectangular and Taylor's quadrature formulae, respectively. This point of view suggests that some theorems concerning quadrature rules could be generalized to results about integration of polyharmonic functions. This is done for the Tchakaloff-Obrechkoff quadrature formula and for the Gaussian quadrature with two nodes.
Resumo:
The purpose of this paper is to show certain links between univariate interpolation by algebraic polynomials and the representation of polyharmonic functions. This allows us to construct cubature formulae for multivariate functions having highest order of precision with respect to the class of polyharmonic functions. We obtain a Gauss type cubature formula that uses ℳ values of linear functional (integrals over hyperspheres) and is exact for all 2ℳ-harmonic functions, and consequently, for all algebraic polynomials of n variables of degree 4ℳ - 1.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Using an algebraic technique related to the SO (2, 1) group we construct the Green function for the potential ar2 + b(r sin θ)-2 + c(r cos θ)-2 + dr2 sin2θ + er2 cos2θ. The energy spectrum and the normalized wave functions are also obtained. © 1990.
Resumo:
In this work, the algebraic properties of the local transition functions of elementary cellular automata (ECA) were analysed. Specifically, a classification of such cellular automata was done according to their algebraic degree, the balancedness, the resiliency, nonlinearity, the propagation criterion and the existence of non-zero linear structures. It is shown that there is not any ECA satisfying all properties at the same time.
Resumo:
Esta tesis establece los fundamentos teóricos y diseña una colección abierta de clases C++ denominada VBF (Vector Boolean Functions) para analizar funciones booleanas vectoriales (funciones que asocian un vector booleano a otro vector booleano) desde una perspectiva criptográfica. Esta nueva implementación emplea la librería NTL de Victor Shoup, incorporando nuevos módulos que complementan a las funciones de NTL, adecuándolas para el análisis criptográfico. La clase fundamental que representa una función booleana vectorial se puede inicializar de manera muy flexible mediante diferentes estructuras de datas tales como la Tabla de verdad, la Representación de traza y la Forma algebraica normal entre otras. De esta manera VBF permite evaluar los criterios criptográficos más relevantes de los algoritmos de cifra en bloque y de stream, así como funciones hash: por ejemplo, proporciona la no-linealidad, la distancia lineal, el grado algebraico, las estructuras lineales, la distribución de frecuencias de los valores absolutos del espectro Walsh o del espectro de autocorrelación, entre otros criterios. Adicionalmente, VBF puede llevar a cabo operaciones entre funciones booleanas vectoriales tales como la comprobación de igualdad, la composición, la inversión, la suma, la suma directa, el bricklayering (aplicación paralela de funciones booleanas vectoriales como la empleada en el algoritmo de cifra Rijndael), y la adición de funciones coordenada. La tesis también muestra el empleo de la librería VBF en dos aplicaciones prácticas. Por un lado, se han analizado las características más relevantes de los sistemas de cifra en bloque. Por otro lado, combinando VBF con algoritmos de optimización, se han diseñado funciones booleanas cuyas propiedades criptográficas son las mejores conocidas hasta la fecha. ABSTRACT This thesis develops the theoretical foundations and designs an open collection of C++ classes, called VBF, designed for analyzing vector Boolean functions (functions that map a Boolean vector to another Boolean vector) from a cryptographic perspective. This new implementation uses the NTL library from Victor Shoup, adding new modules which complement the existing ones making VBF better suited for cryptography. The fundamental class representing a vector Boolean function can be initialized in a flexible way via several alternative types of data structures such as Truth Table, Trace Representation, Algebraic Normal Form (ANF) among others. This way, VBF allows the evaluation of the most relevant cryptographic criteria for block and stream ciphers as well as for hash functions: for instance, it provides the nonlinearity, the linearity distance, the algebraic degree, the linear structures, the frequency distribution of the absolute values of the Walsh Spectrum or the Autocorrelation Spectrum, among others. In addition, VBF can perform operations such as equality testing, composition, inversion, sum, direct sum, bricklayering (parallel application of vector Boolean functions as employed in Rijndael cipher), and adding coordinate functions of two vector Boolean functions. This thesis also illustrates the use of VBF in two practical applications. On the one hand, the most relevant properties of the existing block ciphers have been analysed. On the other hand, by combining VBF with optimization algorithms, new Boolean functions have been designed which have the best known cryptographic properties up-to-date.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
* The author was supported by NSF Grant No. DMS 9706883.
Resumo:
Complex functions, generally feature some interesting peculiarities, seen as extensions real functions, complementing the study of real analysis. However, the visualization of some complex functions properties requires the simultaneous visualization of two-dimensional spaces. The multiple Windows of GeoGebra, combined with its ability of algebraic computation with complex numbers, allow the study of the functions defined from ℂ to ℂ through traditional techniques and by the use of Domain Colouring. Here, we will show how we can use GeoGebra for the study of complex functions, using several representations and creating tools which complement the tools already provided by the software. Our proposals designed for students of the first year of engineering and science courses can and should be used as an educational tool in collaborative learning environments. The main advantage in its use in individual terms is the promotion of the deductive reasoning (conjecture / proof). In performed the literature review few references were found involving this educational topic and by the use of a single software.
Resumo:
Let U be a domain in CN that is not a Runge domain. We study the topological and algebraic properties of the family of holomorphic functions on U which cannot be approximated by polynomials.
Resumo:
The tissue kallikreins are serine proteases encoded by highly conserved multigene families. The rodent kallikrein (KLK) families are particularly large, consisting of 13 26 genes clustered in one chromosomal locus. It has been recently recognised that the human KLK gene family is of a similar size (15 genes) with the identification of another 12 related genes (KLK4-KLK15) within and adjacent to the original human KLK locus (KLK1-3) on chromosome 19q13.4. The structural organisation and size of these new genes is similar to that of other KLK genes except for additional exons encoding 5 or 3 untranslated regions. Moreover, many of these genes have multiple mRNA transcripts, a trait not observed with rodent genes. Unlike all other kallikreins, the KLK4-KLK15 encoded proteases are less related (25–44%) and do not contain a conventional kallikrein loop. Clusters of genes exhibit high prostatic (KLK2-4, KLK15) or pancreatic (KLK6-13) expression, suggesting evolutionary conservation of elements conferring tissue specificity. These genes are also expressed, to varying degrees, in a wider range of tissues suggesting a functional involvement of these newer human kallikrein proteases in a diverse range of physiological processes.