921 resultados para Algebraic Curve
Resumo:
This paper examines the algebraic cryptanalysis of small scale variants of the LEX-BES. LEX-BES is a stream cipher based on the Advanced Encryption Standard (AES) block cipher. LEX is a generic method proposed for constructing a stream cipher from a block cipher, initially introduced by Biryukov at eSTREAM, the ECRYPT Stream Cipher project in 2005. The Big Encryption System (BES) is a block cipher introduced at CRYPTO 2002 which facilitates the algebraic analysis of the AES block cipher. In this paper, experiments were conducted to find solution of the equation system describing small scale LEX-BES using Gröbner Basis computations. This follows a similar approach to the work by Cid, Murphy and Robshaw at FSE 2005 that investigated algebraic cryptanalysis on small scale variants of the BES. The difference between LEX-BES and BES is that due to the way the keystream is extracted, the number of unknowns in LEX-BES equations is fewer than the number in BES. As far as the author knows, this attempt is the first at creating solvable equation systems for stream ciphers based on the LEX method using Gröbner Basis computations.
Resumo:
To date, most applications of algebraic analysis and attacks on stream ciphers are on those based on lin- ear feedback shift registers (LFSRs). In this paper, we extend algebraic analysis to non-LFSR based stream ciphers. Specifically, we perform an algebraic analysis on the RC4 family of stream ciphers, an example of stream ciphers based on dynamic tables, and inves- tigate its implications to potential algebraic attacks on the cipher. This is, to our knowledge, the first pa- per that evaluates the security of RC4 against alge- braic attacks through providing a full set of equations that describe the complex word manipulations in the system. For an arbitrary word size, we derive alge- braic representations for the three main operations used in RC4, namely state extraction, word addition and state permutation. Equations relating the inter- nal states and keystream of RC4 are then obtained from each component of the cipher based on these al- gebraic representations, and analysed in terms of their contributions to the security of RC4 against algebraic attacks. Interestingly, it is shown that each of the three main operations contained in the components has its own unique algebraic properties, and when their respective equations are combined, the resulting system becomes infeasible to solve. This results in a high level of security being achieved by RC4 against algebraic attacks. On the other hand, the removal of an operation from the cipher could compromise this security. Experiments on reduced versions of RC4 have been performed, which confirms the validity of our algebraic analysis and the conclusion that the full RC4 stream cipher seems to be immune to algebraic attacks at present.
Resumo:
We present a novel approach for preprocessing systems of polynomial equations via graph partitioning. The variable-sharing graph of a system of polynomial equations is defined. If such graph is disconnected, then the corresponding system of equations can be split into smaller ones that can be solved individually. This can provide a tremendous speed-up in computing the solution to the system, but is unlikely to occur either randomly or in applications. However, by deleting certain vertices on the graph, the variable-sharing graph could be disconnected in a balanced fashion, and in turn the system of polynomial equations would be separated into smaller systems of near-equal sizes. In graph theory terms, this process is equivalent to finding balanced vertex partitions with minimum-weight vertex separators. The techniques of finding these vertex partitions are discussed, and experiments are performed to evaluate its practicality for general graphs and systems of polynomial equations. Applications of this approach in algebraic cryptanalysis on symmetric ciphers are presented: For the QUAD family of stream ciphers, we show how a malicious party can manufacture conforming systems that can be easily broken. For the stream ciphers Bivium and Trivium, we nachieve significant speedups in algebraic attacks against them, mainly in a partial key guess scenario. In each of these cases, the systems of polynomial equations involved are well-suited to our graph partitioning method. These results may open a new avenue for evaluating the security of symmetric ciphers against algebraic attacks.
Resumo:
Stream ciphers are encryption algorithms used for ensuring the privacy of digital telecommunications. They have been widely used for encrypting military communications, satellite communications, pay TV encryption and for voice encryption of both fixed lined and wireless networks. The current multi year European project eSTREAM, which aims to select stream ciphers suitable for widespread adoptation, reflects the importance of this area of research. Stream ciphers consist of a keystream generator and an output function. Keystream generators produce a sequence that appears to be random, which is combined with the plaintext message using the output function. Most commonly, the output function is binary addition modulo two. Cryptanalysis of these ciphers focuses largely on analysis of the keystream generators and of relationships between the generator and the keystream it produces. Linear feedback shift registers are widely used components in building keystream generators, as the sequences they produce are well understood. Many types of attack have been proposed for breaking various LFSR based stream ciphers. A recent attack type is known as an algebraic attack. Algebraic attacks transform the problem of recovering the key into a problem of solving multivariate system of equations, which eventually recover the internal state bits or the key bits. This type of attack has been shown to be effective on a number of regularly clocked LFSR based stream ciphers. In this thesis, algebraic attacks are extended to a number of well known stream ciphers where at least one LFSR in the system is irregularly clocked. Applying algebriac attacks to these ciphers has only been discussed previously in the open literature for LILI-128. In this thesis, algebraic attacks are first applied to keystream generators using stop-and go clocking. Four ciphers belonging to this group are investigated: the Beth-Piper stop-and-go generator, the alternating step generator, the Gollmann cascade generator and the eSTREAM candidate: the Pomaranch cipher. It is shown that algebraic attacks are very effective on the first three of these ciphers. Although no effective algebraic attack was found for Pomaranch, the algebraic analysis lead to some interesting findings including weaknesses that may be exploited in future attacks. Algebraic attacks are then applied to keystream generators using (p; q) clocking. Two well known examples of such ciphers, the step1/step2 generator and the self decimated generator are investigated. Algebraic attacks are shown to be very powerful attack in recovering the internal state of these generators. A more complex clocking mechanism than either stop-and-go or the (p; q) clocking keystream generators is known as mutual clock control. In mutual clock control generators, the LFSRs control the clocking of each other. Four well known stream ciphers belonging to this group are investigated with respect to algebraic attacks: the Bilateral-stop-and-go generator, A5/1 stream cipher, Alpha 1 stream cipher, and the more recent eSTREAM proposal, the MICKEY stream ciphers. Some theoretical results with regards to the complexity of algebraic attacks on these ciphers are presented. The algebraic analysis of these ciphers showed that generally, it is hard to generate the system of equations required for an algebraic attack on these ciphers. As the algebraic attack could not be applied directly on these ciphers, a different approach was used, namely guessing some bits of the internal state, in order to reduce the degree of the equations. Finally, an algebraic attack on Alpha 1 that requires only 128 bits of keystream to recover the 128 internal state bits is presented. An essential process associated with stream cipher proposals is key initialization. Many recently proposed stream ciphers use an algorithm to initialize the large internal state with a smaller key and possibly publicly known initialization vectors. The effect of key initialization on the performance of algebraic attacks is also investigated in this thesis. The relationships between the two have not been investigated before in the open literature. The investigation is conducted on Trivium and Grain-128, two eSTREAM ciphers. It is shown that the key initialization process has an effect on the success of algebraic attacks, unlike other conventional attacks. In particular, the key initialization process allows an attacker to firstly generate a small number of equations of low degree and then perform an algebraic attack using multiple keystreams. The effect of the number of iterations performed during key initialization is investigated. It is shown that both the number of iterations and the maximum number of initialization vectors to be used with one key should be carefully chosen. Some experimental results on Trivium and Grain-128 are then presented. Finally, the security with respect to algebraic attacks of the well known LILI family of stream ciphers, including the unbroken LILI-II, is investigated. These are irregularly clock- controlled nonlinear filtered generators. While the structure is defined for the LILI family, a particular paramater choice defines a specific instance. Two well known such instances are LILI-128 and LILI-II. The security of these and other instances is investigated to identify which instances are vulnerable to algebraic attacks. The feasibility of recovering the key bits using algebraic attacks is then investigated for both LILI- 128 and LILI-II. Algebraic attacks which recover the internal state with less effort than exhaustive key search are possible for LILI-128 but not for LILI-II. Given the internal state at some point in time, the feasibility of recovering the key bits is also investigated, showing that the parameters used in the key initialization process, if poorly chosen, can lead to a key recovery using algebraic attacks.
Resumo:
This work examines the algebraic cryptanalysis of small scale variants of the LEX-BES. LEX-BES is a stream cipher based on the Advanced Encryption Standard (AES) block cipher. LEX is a generic method proposed for constructing a stream cipher from a block cipher, initially introduced by Biryukov at eSTREAM, the ECRYPT Stream Cipher project in 2005. The Big Encryption System (BES) is a block cipher introduced at CRYPTO 2002 which facilitates the algebraic analysis of the AES block cipher. In this article, experiments were conducted to find solutions of equation systems describing small scale LEX-BES using Gröbner Basis computations. This follows a similar approach to the work by Cid, Murphy and Robshaw at FSE 2005 that investigated algebraic cryptanalysis on small scale variants of the BES. The difference between LEX-BES and BES is that due to the way the keystream is extracted, the number of unknowns in LEX-BES equations is fewer than the number in BES. As far as the authors know, this attempt is the first at creating solvable equation systems for stream ciphers based on the LEX method using Gröbner Basis computations.
Resumo:
Recently, an analysis of the response curve of the vascular endothelial growth factor (VEGF) receptor and its application to cancer therapy was described in [T. Alarcón, and K. Page, J. R. Soc. Lond. Interface 4, 283–304 (2007)]. The analysis is significantly extended here by demonstrating that an alternative computational strategy, namely the Krylov FSP algorithm for the direct solution of the chemical master equation, is feasible for the study of the receptor model. The new method allows us to further investigate the hypothesis of symmetry in the stochastic fluctuations of the response. Also, by augmenting the original model with a single reversible reaction we formulate a plausible mechanism capable of realizing a bimodal response, which is reported experimentally but which is not exhibited by the original model. The significance of these findings for mechanisms of tumour resistance to antiangiogenic therapy is discussed.
Resumo:
Existing algebraic analyses of the ZUC cipher indicate that the cipher should be secure against algebraic attacks. In this paper, we present an alternative algebraic analysis method for the ZUC stream cipher, where a combiner is used to represent the nonlinear function and to derive equations representing the cipher. Using this approach, the initial states of ZUC can be recovered from 2^97 observed words of keystream, with a complexity of 2^282 operations. This method is more successful when applied to a modified version of ZUC, where the number of output words per clock is increased. If the cipher outputs 120 bits of keystream per clock, the attack can succeed with 219 observed keystream bits and 2^47 operations. Therefore, the security of ZUC against algebraic attack could be significantly reduced if its throughput was to be increased for efficiency.
Resumo:
Both the SSS and SOBER-t32 stream cipher designs use a single word-based shift register and a nonlinear filter function to produce keystream. In this paper we show that the algebraic attack method previously applied to SOBER-t32 is prevented from succeeding on SSS by the use of the key dependent substitution box (SBox) in the nonlinear filter of SSS. Additional assumptions and modifications to the SSS cipher in an attempt to enable algebraic analysis result in other difficulties that also render the algebraic attack infeasible. Based on these results, we conclude that a well chosen key-dependent substitution box used in the nonlinear filter of the stream cipher provides resistance against such algebraic attacks.
Resumo:
A novel method for genotyping the clustered, regularly interspaced short-palindromic-repeat (CRISPR) locus of Campylobacter jejuni is described. Following real-time PCR, CRISPR products were subjected to high-resolution melt (HRM) analysis, a new technology that allows precise melt profile determination of amplicons. This investigation shows that the CRISPR HRM assay provides a powerful addition to existing C. jejuni genotyping methods and emphasizes the potential of HRM for genotyping short sequence repeats in other species
Resumo:
Study Design. Analysis of a case series of 24 Lenke 1C adolescent idiopathic scoliosis (AIS) patients receiving selective thoracoscopic anterior scoliosis correction. Objective. To report the behaviour of the compensatory lumbar curve in a group of Lenke IC AIS patients following thoracoscopic anterior scoliosis correction, and to compare the results of this study with previously published data. Summary of Background Data. Several prior studies have reported spontaneous lumbar curve correction for both anterior and posterior selective fusion in Lenke 1C/King-Moe II patients; however to our knowledge no previous studies have reported outcomes of thoracoscopic anterior correction for this curve type. Methods. All AIS patients with a curve classification of Lenke 1C and a minimum of 24 months follow-up were retrieved from a consecutive series of 190 AIS patients who underwent thoracoscopic anterior instrumented fusion. Cobb angles of the major curve, instrumented levels, compensatory lumbar curve, and T5-T12 kyphosis were recorded, as well as coronal spinal balance, T1 tilt angle and shoulder balance. All radiographic parameters were measured before surgery and at 2, 6, 12 and 24 months after surgery. Results. Twenty-four female patients with right thoracic curves had a mean thoracic Cobb angle of 53.0° before surgery, decreasing to 24.9° two years after surgery. The mean lumbar compensatory Cobb angle was 43.5° before surgery, spontaneously correcting to 25.4° two years after surgery, indicating balance between the thoracic and lumbar scoliotic curves. The lumbar correction achieved (41.8%) compares favourably to previous studies. Conclusions. Selective thoracoscopic anterior fusion allows spontaneous lumbar curve correction and achieves coronal balance of main thoracic and compensatory lumbar curves, good cosmesis and patient satisfaction. Correction and balance are maintained 24 months after surgery.
Resumo:
Normal thoracic kyphosis Cobb angle for T5-T12 is most commonly reported as a range of 20-40º [1]. Patients with adolescent idiopathic scoliosis (AIS) exhibit a reduced thoracic kyphosis or hypokyphosis [2] accompanying the coronal and rotary distortion components. As a result, surgical restoration of the thoracic kyphosis while maintaining lumbar lordosis and overall sagittal balance is a critical aspect of achieving good clinical outcomes in AIS patients. Previous studies report an increase in thoracic kyphosis after anterior surgical approaches [3] and a flattening of sagittal contours following posterior approaches [4]. Difficulties with measuring sagittal parameters on radiographs are avoided with reformatted sagittal CT reconstructions due to the superior endplate clarity afforded by this imaging modality and are the subject of analysis in this study.