45 resultados para AUVs
Resumo:
AUV在长时间作业过程中需要浮出水面进行GPS定位,既浪费时间又浪费能源,因此仿照潜艇上的拖曳天线的形式,在AUV上采用了形状简单的GPS天线球,这种天线球的拖曳运动特性是本文的主要研究内容。 本文分析了这种天线球在静水环境下的拖曳运动情况,建立了拖曳系统的数学模型。其中对于缆绳采用了Ablow提出的有限差分模型,对于自由表面上的天线球,采用水动力系数法进行分析,对耦合的系统采用前向差分法进行求解。在此基础上编制程序进行仿真。 为了验证仿真结果,在拖曳水池进行了拖曳试验。在试验中通过改变拖曳速度和缆绳长度,得到了一系列的张力数据和天线球姿态。对试验数据和计算结果的比较表明,上面的数学模型在速度小于2节时能够模拟真实情况,反之则会出现较大的误差。经过查找,本文排除了试验误差和计算参数选取不当这两个可能的原因,最终认定是天线球的模型不够完善,因为它在自由表面上受到了兴波阻力的作用。 本文也对有限差分程序的结果和叶果洛夫给出的缆绳数据进行了比较,比较表明基于本文编写的缆绳分析程序是可靠的。在此基础上,本文把拖曳试验测量到的张力作为边界条件对实际工程进行了分析计算,指出目前缆绳长度14米的情况不能满足期望的10米拖曳深度;若要拖曳深度达到10米,需要加大天线球的浮力并增加缆绳长度,本文也给出了这种情况下的几组参数的具体值。
Resumo:
文章给出了水下机器人的定义 ,依据定义进行了分类 ,简要回顾了几类重要水下机器人的进展 ,指出了无人无缆自治水下机器人 (AUVs)是当今水下机器人研究与开发的热点 ,介绍了最近 2 0年沈阳自动化研究所与国内外有关单位合作 ,在水下机器人领域从无人有缆遥控水下机器人 (ROVs)到AUVs的研究开发工作 ,它从一个侧面反映了我国在这一领域的进展情况。
Resumo:
简要回顾了自治水下机器人AUVs研究的历史,概述了AUVs研究开发的现状和未来发展趋势
Resumo:
本文介绍了我们承担研制的国家“863”计划1000m及6000m无缆水下机器人的回收系统.回收系统在4级海况下不用专用母船能够成功地回收水下机器人,依据母船、海况、水下机器人及其他具体情况,介绍了两种不同的回收方案和回收器,经海上试验证明是有效和可行的。
Resumo:
Underwater acoustic networks can be quite effective to establish communication links between autonomous underwater vehicles (AUVs) and other vehicles or control units, enabling complex vehicle applications and control scenarios. A communications and control framework to support the use of underwater acoustic networks and sample application scenarios are described for single and multi-AUV operation.
Resumo:
Proposes a behavior-based scheme for high-level control of autonomous underwater vehicles (AUVs). Two main characteristics can be highlighted in the control scheme. Behavior coordination is done through a hybrid methodology, which takes in advantages of the robustness and modularity in competitive approaches, as well as optimized trajectories
Resumo:
This paper presents a hybrid behavior-based scheme using reinforcement learning for high-level control of autonomous underwater vehicles (AUVs). Two main features of the presented approach are hybrid behavior coordination and semi on-line neural-Q_learning (SONQL). Hybrid behavior coordination takes advantages of robustness and modularity in the competitive approach as well as efficient trajectories in the cooperative approach. SONQL, a new continuous approach of the Q_learning algorithm with a multilayer neural network is used to learn behavior state/action mapping online. Experimental results show the feasibility of the presented approach for AUVs
Resumo:
In this paper we describe a system for underwater navigation with AUVs in partially structured environments, such as dams, ports or marine platforms. An imaging sonar is used to obtain information about the location of planar structures present in such environments. This information is incorporated into a feature-based SLAM algorithm in a two step process: (I) the full 360deg sonar scan is undistorted (to compensate for vehicle motion), thresholded and segmented to determine which measurements correspond to planar environment features and which should be ignored; and (2) SLAM proceeds once the data association is obtained: both the vehicle motion and the measurements whose correct association has been previously determined are incorporated in the SLAM algorithm. This two step delayed SLAM process allows to robustly determine the feature and vehicle locations in the presence of large amounts of spurious or unrelated measurements that might correspond to boats, rocks, etc. Preliminary experiments show the viability of the proposed approach
Resumo:
This paper describes a navigation system for autonomous underwater vehicles (AUVs) in partially structured environments, such as dams, harbors, marinas or marine platforms. A mechanical scanning imaging sonar is used to obtain information about the location of planar structures present in such environments. A modified version of the Hough transform has been developed to extract line features, together with their uncertainty, from the continuous sonar dataflow. The information obtained is incorporated into a feature-based SLAM algorithm running an Extended Kalman Filter (EKF). Simultaneously, the AUV's position estimate is provided to the feature extraction algorithm to correct the distortions that the vehicle motion produces in the acoustic images. Experiments carried out in a marina located in the Costa Brava (Spain) with the Ictineu AUV show the viability of the proposed approach
Resumo:
Darrerament, l'interès pel desenvolupament d'aplicacions amb robots submarins autònoms (AUV) ha crescut de forma considerable. Els AUVs són atractius gràcies al seu tamany i el fet que no necessiten un operador humà per pilotar-los. Tot i això, és impossible comparar, en termes d'eficiència i flexibilitat, l'habilitat d'un pilot humà amb les escasses capacitats operatives que ofereixen els AUVs actuals. L'utilització de AUVs per cobrir grans àrees implica resoldre problemes complexos, especialment si es desitja que el nostre robot reaccioni en temps real a canvis sobtats en les condicions de treball. Per aquestes raons, el desenvolupament de sistemes de control autònom amb l'objectiu de millorar aquestes capacitats ha esdevingut una prioritat. Aquesta tesi tracta sobre el problema de la presa de decisions utilizant AUVs. El treball presentat es centra en l'estudi, disseny i aplicació de comportaments per a AUVs utilitzant tècniques d'aprenentatge per reforç (RL). La contribució principal d'aquesta tesi consisteix en l'aplicació de diverses tècniques de RL per tal de millorar l'autonomia dels robots submarins, amb l'objectiu final de demostrar la viabilitat d'aquests algoritmes per aprendre tasques submarines autònomes en temps real. En RL, el robot intenta maximitzar un reforç escalar obtingut com a conseqüència de la seva interacció amb l'entorn. L'objectiu és trobar una política òptima que relaciona tots els estats possibles amb les accions a executar per a cada estat que maximitzen la suma de reforços totals. Així, aquesta tesi investiga principalment dues tipologies d'algoritmes basats en RL: mètodes basats en funcions de valor (VF) i mètodes basats en el gradient (PG). Els resultats experimentals finals mostren el robot submarí Ictineu en una tasca autònoma real de seguiment de cables submarins. Per portar-la a terme, s'ha dissenyat un algoritme anomenat mètode d'Actor i Crític (AC), fruit de la fusió de mètodes VF amb tècniques de PG.
Resumo:
A number of autonomous underwater vehicles, AUV, are equipped with commercial ducted propellers, most of them produced originally for the remote operated vehicle, ROV, industry. However, AUVs and ROVs are supposed to work quite differently since the ROV operates in almost the bollard pull condition, while the AUV works at larger cruising speeds. Moreover, they can have an influence in the maneuverability of AUV due to the lift the duct generates in the most distant place of the vehicle's center of mass. In this work, it is proposed the modeling of the hydrodynamic forces and moment on a duct propeller according to a numerical (CFD) simulation, and analytical and semi-empirical, ASE, approaches. Predicted values are compared to experimental results produced in a towing tank. Results confirm the advantages of the symbiosis between CFD and ASE methods for modeling the influence of the propeller duct in the AUV maneuverability. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Computational fluid dynamics, CFD, is becoming an essential tool in the prediction of the hydrodynamic efforts and flow characteristics of underwater vehicles for manoeuvring studies. However, when applied to the manoeuvrability of autonomous underwater vehicles, AUVs, most studies have focused on the de- termination of static coefficients without considering the effects of the vehicle control surface deflection. This paper analyses the hydrodynamic efforts generated on an AUV considering the combined effects of the control surface deflection and the angle of attack using CFD software based on the Reynolds-averaged Navier–Stokes formulations. The CFD simulations are also independently conducted for the AUV bare hull and control surface to better identify their individual and interference efforts and to validate the simulations by comparing the experimental results obtained in a towing tank. Several simulations of the bare hull case were conducted to select the k –ω SST turbulent model with the viscosity approach that best predicts its hydrodynamic efforts. Mesh sensitivity analyses were conducted for all simulations. For the flow around the control surfaces, the CFD results were analysed according to two different methodologies, standard and nonlinear. The nonlinear regression methodology provides better results than the standard methodology does for predicting the stall at the control surface. The flow simulations have shown that the occurrence of the control surface stall depends on a linear relationship between the angle of attack and the control surface deflection. This type of information can be used in designing the vehicle’s autopilot system.
Resumo:
The present paper describes a system for the construction of visual maps ("mosaics") and motion estimation for a set of AUVs (Autonomous Underwater Vehicles). Robots are equipped with down-looking camera which is used to estimate their motion with respect to the seafloor and built an online mosaic. As the mosaic increases in size, a systematic bias is introduced in its alignment, resulting in an erroneous output. The theoretical concepts associated with the use of an Augmented State Kalman Filter (ASKF) were applied to optimally estimate both visual map and the fleet position.
Resumo:
Este trabajo se enfoca en la implementación de un detector de arrecife de coral de desempeño rápido que se utiliza para un vehículo autónomo submarino (Autonomous Underwater Vehicle, AUV, por sus siglas en inglés). Una detección rápida de la presencia de coral asegura la estabilización del AUV frente al arrecife en el menor tiempo posible, evitando colisiones con el coral. La detección de coral se hace en una imagen que captura la escena que percibe la cámara del AUV. Se realiza una clasificación píxel por píxel entre dos clases: arrecife de coral y el plano de fondo que no es coral. A cada píxel de la imagen se le asigna un vector característico, el mismo que se genera mediante el uso de filtros Gabor Wavelets. Éstos son implementados en C++ y la librería OpenCV. Los vectores característicos son clasificados a través de nueve algoritmos de máquinas de aprendizaje. El desempeño de cada algoritmo se compara mediante la precisión y el tiempo de ejecución. El algoritmo de Árboles de Decisión resultó ser el más rápido y preciso de entre todos los algoritmos. Se creó una base de datos de 621 imágenes de corales de Belice (110 imágenes de entrenamiento y 511 imágenes de prueba).
Resumo:
The EU-funded project UAN - Underwater Acoustic Network aims at conceiving, developing and testing at sea an innovative and operational concept for integrating in a unique communication system submerged, surface and aerial sensors with the objective of protecting off-shore and coastline critical infrastructures. A crucial aspect of the project consisted in the use of autonomous underwater vehicles (AUVs) as mobile nodes in the underwater acoustic communication network. In particular, AUVs have the role of adapting the network geometry to the variation of the acoustic channel. This paper reports on the project concept and vision as well as on the progress of its various development phases. The recent at-sea successes that have been demonstrated within the UAN framework are detailed and results of the final UAN project demonstration, UAN11, held in the May of 2011, are reported. The UAN network was in operation for five continuous days with up to five nodes, of which three of them were mobile nodes. © IFAC.