803 resultados para 290200 Aerospace Engineering
Resumo:
Shock-tunnel experiments have been performed to measure the effect on skin-friction drag in a supersonic combustor of flow disturbances induced by hydrogen fuel injection transverse to the airstream. Constant-area, circular cross section combustors of lengths varying up to 0.52 m were employed. The experiments were done at a stagnation enthalpy of 7.2 MJ . kg(-1) and a Mach number of 4.3, with a boundary layer that was turbulent downstream of the 0.14-m station in the combustors. Combustor skin-friction drag was measured by a method based on the stress wave force balance, the method being validated by agreement between fuel-off skin-friction drag measurements and predictions using existing skin-friction theories. When fuel was injected, it was found that the drag remained at fuel-off values. Thus, the streamwise vortices and other flow disturbances induced by the fuel injection, mixing, and combustion, which are expected to be present in a scramjet combustor, did not influence the skin-friction drag of the combustors.
Resumo:
Expansion tubes operating at total flow enthalpies of 100 MJ kg(-1) or more have characteristical test times of 30-50 mus. Under these conditions, the response time of the Pitot pressure measuring device is critical when performing flow calibration studies. The conventional technique of using a commercial pressure transducer protected by shielding has not always proven to be effective, due to the relatively large (and variable) response time caused by the shielding. A device called the stress wave bar gauge has been designed and calibrated and shown to be an effective way to measure the Pitot pressure with a response time of only 2-3 mus.
Resumo:
Injection from portholes upstream of the combustion chamber was investigated as a method of delivering fuel into a scramjet. This method reduces the viscous drag on a model by allowing a reduction in the length of the combustion chamber. At experimental enthalpies of 3.0 MJ/kg in the T4 shock tunnel, there was no evidence of combustion in the intake, either by shadowgraph or pressure measurements. Combustion was observed in the combustion chamber. A theoretical extension of these results is made to a hot wall scenario.
Resumo:
Heat transfer levels have been investigated behind a rearward-facing step in a superorbital expansion tube. The heat transfer was measured along a flat plate and behind 2 and 3mm steps with the same length to step height ratio. Results were obtained with air as the test gas at speeds of 6.76kms(-1) and 9-60kms(-1) corresponding to stagnation enthalpies of 26MJ/kg and 48MJ/kg respectively. A laminar boundary layer was established on the flat plate and measured heat transfer levels were consistent with classical empirical correlations. In the case of flow behind a step, the measurements showed a gradual rise in heat transfer from the rear of the step to a plateau several step heights downstream for both flow conditions. Reattachment distance was estimated to be approximately 1.6 step heights downstream of the 2mm step at the low enthalpy condition through the use of flow visualisation.
Resumo:
Skin-friction measurements are reported for high-enthalpy and high-Mach-number laminar, transitional and turbulent boundary layers. The measurements were performed in a free-piston shock tunnel with air-flow Mach number, stagnation enthalpy and Reynolds numbers in the ranges of 4.4-6.7, 3-13 MJ kg(-1) and 0.16 x 10(6)-21 x 10(6), respectively. Wall temperatures were near 300 K and this resulted in ratios of wall enthalpy to flow-stagnation enthalpy in the range of 0.1-0.02. The experiments were performed using rectangular ducts. The measurements were accomplished using a new skin-friction gauge that was developed for impulse facility testing. The gauge was an acceleration compensated piezoelectric transducer and had a lowest natural frequency near 40 kHz. Turbulent skin-friction levels were measured to within a typical uncertainty of +/-7%. The systematic uncertainty in measured skin-friction coefficient was high for the tested laminar conditions; however, to within experimental uncertainty, the skin-friction and heat-transfer measurements were in agreement with the laminar theory of van Driest (1952). For predicting turbulent skin-friction coefficient, it was established that, for the range of Mach numbers and Reynolds numbers of the experiments, with cold walls and boundary layers approaching the turbulent equilibrium state, the Spalding & Chi (1964) method was the most suitable of the theories tested. It was also established that if the heat transfer rate to the wall is to be predicted, then the Spalding & Chi (1964) method should be used in conjunction with a Reynolds analogy factor near unity. If more accurate results are required, then an experimentally observed relationship between the Reynolds analogy factor and the skin-friction coefficient may be applied.
Resumo:
The technological evolution of the past fifty years has provided Humanity the contact with the last frontier of knowledge: space. An unknown world, explored by a small group of nations, which has become crucial to understanding who we are and where we come from. Space assets in recent years have opened the way to a digital society, shaped by the rapid exchange of information, whose means are mostly in space. A place of fascination and curiosity, restricted to a few people in these decades, which may soon be changing. This essay addresses some legal issues concerning the private exploration of space. Liability on space tourism is the core of this investigation, focusing on the comprehension of the international legal framework and its connection with the states national law. In particular, the study of the main international treaties, the U.S. legal system of space law and the developments in Europe are the fundamental tools of the current analysis, not forgetting the point of view of a possible international harmonization. Besides the needed theoretical context on the evolution of space law and a brief approach of the technical matters of the current aerospace engineering, the goal is to examine the characteristics of international space law and its relation with the new private actors, responsible for providing suborbital flights, operating in a near future. Within these circumstances, given the economic potential of the growing private space industry, it is essential to discuss the legal aspects of a spatial regulation. Being liability, undoubtedly, the emerging issue in the legal debate on this topic, it is important to safeguard the interests of the operators, States and, above all, future space tourists.
Resumo:
Scientific and technological advancements in the area of fibrous and textile materials have greatly enhanced their application potential in several high-end technical and industrial sectors including construction, transportation, medical, sports, aerospace engineering, electronics and so on. Excellent performance accompanied by light-weight, mechanical flexibility, tailor-ability, design flexibility, easy fabrication and relatively lower cost are the driving forces towards wide applications of these materials. Cost-effective fabrication of various advanced and functional materials for structural parts, medical devices, sensors, energy harvesting devices, capacitors, batteries, and many others has been possible using fibrous and textile materials. Structural membranes are one of the innovative applications of textile structures and these novel building skins are becoming very popular due to flexible design aesthetics, durability, lightweight and cost benefits. Current demand on high performance and multi-functional materials in structural applications has motivated to go beyond the basic textile structures used for structural membranes and to use innovative textile materials. Structural membranes with self-cleaning, thermoregulation and energy harvesting capability (using solar cells) are examples of such recently developed multi-functional membranes. Besides these, there exist enormous opportunities to develop wide varieties of multi-functional membranes using functional textile materials. Additionally, it is also possible to further enhance the performance and functionalities of structural membranes using advanced fibrous architectures such as 2D, 3D, hybrid, multi-layer and so on. In this context, the present paper gives an overview of various advanced and functional fibrous and textile materials which have enormous application potential in structural membranes.
Resumo:
Treball de recerca realitzat per una alumna d'ensenyament secundari i guardonat amb un Premi CIRIT per fomentar l'esperit científic del Jovent l'any 2009. L’albedo lunar i els satèl•lits és un treball que relaciona l’enginyeria aeroespacial amb l’astronomia. El seu objectiu principal investigar si l’albedo lunar, els rajos de sol reflectits a la superfície lunar, pot modificar significativament la temperatura de les plaques solars d’un satèl•lit artificial que orbiti la Lluna i, en conseqüència, afectar-ne el rendiment. El segon objectiu del treball és calcular si seria possible fer un mapa d’albedo lunar, a partir de la temperatura d’un satèl•lit en òrbita al voltant de la Lluna, que permetria conèixer amb més precisió la composició de la superfície lunar. Després d’adquirir els fonaments teòrics necessaris per a realitzar el treball, del procés per a trobar la manera de dur a terme els càlculs i d’efectuar els càlculs en si, les conclusions del treball són que l’albedo lunar causa un augment de temperatura en els satèl•lits prou significatiu per afectar-ne el rendiment; i que amb les temperatures enregistrades per un satèl•lit en òrbita al voltant de la Lluna es podria crear un mapa d’albedo. Aquesta recerca ha estat feta per suggeriment i sota la supervisió del CTAE (Centre de Tecnologia Aeroespacial) per analitzar si els resultats són aplicables al satèl•lit que s’enviarà a la Lluna, Lunar Mission BW1.
Resumo:
Aviation causes climate change as a result of its emissions of CO2, oxides of nitrogen, aerosols, and water vapor. One simple method of quantifying the climate impact of past emissions is radiative forcing. The radiative forcing due to changes in CO2 is best characterized, but there are formidable difficulties in estimating the non-CO2 forcings – this is particularly the case for possible aviation-induced changes in cloudiness (AIC). The most recent comprehensive assessment gave a best estimate of the 2005 total radiative forcing due to aviation of about 55–78 mW m−2 depending on whether AIC was included or not, with an uncertainty of at least a factor of 2. The aviation CO2 radiative forcing represents about 1.6% of the total CO2 forcing from all human activities. It is estimated that, including the non-CO2 effects, aviation contributes between 1.3 and 14% of the total radiative forcing due to all human activities. Alternative methods for comparing the future impact of present-day aviation emissions are presented – the perception of the relative importance of the non-CO2 emissions, relative to CO2, depends considerably on the chosen method and the parameters chosen within those methods.
Resumo:
The 2024-T3 and 7050-T7 aluminium alloys electrochemical behavior has been studied in NaCl 5% neutral solutions and 0,1M concentration containing NO 3 - or NO 2 -. The current job supports corrosion research on aluminium alloys used in aeronautic industry. Open circuit potential, polarisation curves and electrochemical impedance spectroscopy techniques have been used. In chloride solutions, alloys corrosion takes place through a pitting mechanism. Added anions to aerated solutions do not possess inhibition effect. In deaerated solutions, nitrite has diminished anodic dissolution rate, probably by incorporating this anion in the oxide and/or hydroxide film.
Resumo:
Ablation is a thermal protection process with several applications in engineering, mainly in the field of airspace industry. The use of conventional materials must be quite restricted, because they would suffer catastrophic flaws due to thermal degradation of their structures. However, the same materials can be quite suitable once being protected by well-known ablative materials. The process that involves the ablative phenomena is complex, could involve the whole or partial loss of material that is sacrificed for absorption of energy. The analysis of the ablative process in a blunt body with revolution geometry will be made on the stagnation point area that can be simplified as a one-dimensional plane plate problem, hi this work the Generalized Integral Transform Technique (GITT) is employed for the solution of the non-linear system of coupled partial differential equations that model the phenomena. The solution of the problem is obtained by transforming the non-linear partial differential equation system to a system of coupled first order ordinary differential equations and then solving it by using well-established numerical routines. The results of interest such as the temperature field, the depth and the rate of removal of the ablative material are presented and compared with those ones available in the open literature.
Resumo:
Effects due to resonances in the orbital motion of artificial satellites disturbed by the terrestrial tide are analyzed. The nodal co-rotation resonance, apsidal co-rotation resonance and the Lidov-Kozai's mechanism are studied. The effects of the resonances are analyzed through the variations of the metric orbital elements. Libration and circulation motions for high orbits with high eccentricities are verified for the Lidov-Kozai's mechanism.
Resumo:
In this work, the resonance problem in the artificial satellites motion is studied. The development of the geopotential includes the zonal harmonics J20 and J40 and the tesseral harmonics J22 and J42. Through successive Mathieu transformations, the order of dynamical system is reduced and the final system is solved by numerical integration. In the simplified dynamical model, two critical angles are studied, 2201 and 4211. Numerical results show the time behavior of the semi-major axis and 2 angle.