977 resultados para vapor deposition


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Complementary in situ X-ray photoelectron spectroscopy (XPS), X-ray diffractometry, and environmental scanning electron microscopy are used to fingerprint the entire graphene chemical vapor deposition process on technologically important polycrystalline Cu catalysts to address the current lack of understanding of the underlying fundamental growth mechanisms and catalyst interactions. Graphene forms directly on metallic Cu during the high-temperature hydrocarbon exposure, whereby an upshift in the binding energies of the corresponding C1s XPS core level signatures is indicative of coupling between the Cu catalyst and the growing graphene. Minor carbon uptake into Cu can under certain conditions manifest itself as carbon precipitation upon cooling. Postgrowth, ambient air exposure even at room temperature decouples the graphene from Cu by (reversible) oxygen intercalation. The importance of these dynamic interactions is discussed for graphene growth, processing, and device integration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Chemical vapor deposition on copper is the most widely used method to synthesize graphene at large scale. However, the clear understanding of the fundamental mechanisms that govern this synthesis is lacking. Using a vertical-flow, cold-wall reactor with short gas residence time we observe the early growths to study the kinetics of chemical vapor deposition of graphene on copper foils and demonstrate uniform synthesis at wafer scale. Our results indicate that the growth is limited by the catalytic dissociative dehydrogenation on the surface and copper sublimation hinders the graphene growth. We report an activation energy of 3.1 eV for ethylene-based graphene synthesis. © The Electrochemical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We systematically study the growth of carbon nanotube forests by chemical vapor deposition using evaporated monometallic or bimetallic Ni, Co, or Fe films supported on alumina. Our results show two regimes of catalytic activity. When the total thickness of catalyst is larger than nominally 1nm, bimetallic catalysts tend to outperform the equivalent layers of a single metal, yielding taller forests of multi-walled carbon nanotubes (CNTs). In contrast, for layers thinner than ~1nm, bimetallic catalysts are notably less active than individually. However, the amount of small diameter and single-walled CNTs is significantly increased. This possible transition at ~1nm might be related to different catalyst composition after annealing, depending whether or not the films overlap during evaporation and alloy during catalyst formation. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this article, we describe a simple method to reversibly tune the wetting properties of vertically aligned carbon nanotube (CNT) arrays. Here, CNT arrays are defined as densely packed multi-walled carbon nanotubes oriented perpendicular to the growth substrate as a result of a growth process by the standard thermal chemical vapor deposition (CVD) technique.(1,2) These CNT arrays are then exposed to vacuum annealing treatment to make them more hydrophobic or to dry oxidation treatment to render them more hydrophilic. The hydrophobic CNT arrays can be turned hydrophilic by exposing them to dry oxidation treatment, while the hydrophilic CNT arrays can be turned hydrophobic by exposing them to vacuum annealing treatment. Using a combination of both treatments, CNT arrays can be repeatedly switched between hydrophilic and hydrophobic.(2) Therefore, such combination show a very high potential in many industrial and consumer applications, including drug delivery system and high power density supercapacitors.(3-5) The key to vary the wettability of CNT arrays is to control the surface concentration of oxygen adsorbates. Basically oxygen adsorbates can be introduced by exposing the CNT arrays to any oxidation treatment. Here we use dry oxidation treatments, such as oxygen plasma and UV/ozone, to functionalize the surface of CNT with oxygenated functional groups. These oxygenated functional groups allow hydrogen bond between the surface of CNT and water molecules to form, rendering the CNT hydrophilic. To turn them hydrophobic, adsorbed oxygen must be removed from the surface of CNT. Here we employ vacuum annealing treatment to induce oxygen desorption process. CNT arrays with extremely low surface concentration of oxygen adsorbates exhibit a superhydrophobic behavior.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Graphene grown by Chemical Vapor Deposition (CVD) on nickel subsrate is oxidized by means of oxygen plasma and UV/Ozone treatments to introduce bandgap opening in graphene. The degree of band gap opening is proportional to the degree of oxidation on the graphene. This result is analyzed and confirmed by Scanning Tunnelling Microscopy/Spectroscopy and Raman spectroscopy measurements. Compared to conventional wet-oxidation methods, oxygen plasma and UV/Ozone treatments do not require harsh chemicals to perform, allow faster oxidation rates, and enable site-specific oxidation. These features make oxygen plasma and UV/Ozone treatments ideal candidates to be implemented in high-throughput fabrication of graphene-based microelectronics. © 2011 Materials Research Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We show that catalyst pretreatment conditions can have a profound effect on the chiral distribution in single-walled carbon nanotube chemical vapor deposition. Using a SiO2-supported cobalt model catalyst and pretreatment in NH3, we obtain a comparably narrowed chiral distribution with a downshifted tube diameter range, independent of the hydrocarbon source. Our findings demonstrate that the state of the catalyst at the point of carbon nanotube nucleation is of fundamental importance for chiral control, thus identifying the pretreatment atmosphere as a key parameter for control of diameter and chirality distributions. © 2014 American Chemical Society.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A model of the graphene growth mechanism of chemical vapor deposition on platinum is proposed and verified by experiments. Surface catalysis and carbon segregation occur, respectively, at high and low temperatures in the process, representing the so-called balance and segregation regimes. Catalysis leads to self-limiting formation of large area monolayer graphene, whereas segregation results in multilayers, which evidently "grow from below." By controlling kinetic factors, dominantly monolayer graphene whose high quality has been confirmed by quantum Hall measurement can be deposited on platinum with hydrogen-rich environment, quench cooling, tiny but continuous methane flow and about 1000°C growth temperature. © 2014 AIP Publishing LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-04-13T16:03:37Z No. of bitstreams: 1 Growing 20 cm Long DWNTsTWNTs at a Rapid Growth Rate of 80-90 mu ms .pdf: 3229914 bytes, checksum: 0259795afb443dc6901c11df5ecd325a (MD5)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Molecular dynamics simulations with the Tersoff potential were used to study the response of twinned SiC nanowires under tensile and compressive strain. The critical strain of the twinned nanowires can be enhanced by twin stacking faults, and their critical strains are larger than those of perfect nanowires with the same diameters. Under axial tensile strain, the bonds of the nanowires are stretched just before failure. The failure behavior is found to depend on the twin segment thickness and the diameter of the nanowires. An atomic chain is observed for thin nanowires with small twin segment thickness under tension strain. Under axial compressive strain, the collapse of twinned SiC nanowires exhibits two different failure modes, depending on the length and diameter of the nanowires, i.e., shell buckling for short nanowires and columnar buckling for longer nanowires.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Five-micron thick freestanding Si cantilevers were fabricated on bulk Si (1 1 1) substrates with surface/bulk micromachining (SBM) process. Then 1-mu m thick GaN layers were deposited on the Si cantilevers by metal-organic chemical vapor deposition (MOCVD). Epilayers on cantilever areas were obtained crack-free, and the photoluminescence (PL) spectra verified the stress reduction and better material quality in these suspended parts of GaN. Back sides of the cantilevers were also covered with GaN layers, which prevented the composite beams from bending dramatically. This paper had proved the feasibility of integrating high-quality GaN epilayers with Si micromechanical structures to realize GaN-based micro electro-mechanical system (MEMS). (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The influence of well thickness on the electroluminescence (EL) of InGaN/GaN multiple quantum wells (MQWs) grown by metalorganic chemical vapor deposition is investigated. It is found that the peak wavelength of EL increases with the increase of well thickness when the latter is located in the range of 3.0-5.1 nm. The redshift is mainly attributed to the quantum confined Stark effect (QCSE). As a contrast, it is found that the EL intensity of InGaN/GaN MQWs increases with the increase of well thickness in spite of QCSE. The result of X-ray diffraction demonstrates that the interface become smoother with the increase of well thickness and suggests that the reduced interface roughness can be an important factor leading to the increase of EL intensity of InGaN/GaN MQWs. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Atomic configurations and formation energies of native defects in an unsaturated GaN nanowire grown along the [001] direction and with (100) lateral facets are studied using large-scale ab initio calculation. Cation and anion vacancies, antisites, and interstitials in the neutral charge state are all considered. The configurations of these defects in the core region and outermost surface region of the nanowire are different. The atomic configurations of the defects in the core region are same as those in the bulk GaN, and the formation energy is large. The defects at the surface show different atomic configurations with low formation energy. Starting from a Ga vacancy at the edge of the side plane of the nanowire, a N-N split interstitial is formed after relaxation. As a N site is replaced by a Ga atom in the suboutermost layer, the Ga atom will be expelled out of the outermost layers and leaves a vacancy at the original N site. The Ga interstitial at the outmost surface will diffuse out by interstitialcy mechanism. For all the tested cases N-N split interstitials are easily formed with low formation energy in the nanowires, indicating N-2 molecular will appear in the GaN nanowire, which agrees well with experimental findings.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We have investigated the optical properties of thick InGaN film grown on GaN by cathodeluminescence (CL) spectroscopy. It is found that there is obvious In composition variation in both growth and lateral direction of InGaN film. The depth distribution of In composition is closely related to the strain relaxation process of InGaN film. Accompanied with the relaxation of compressive strain, the In composition of InGaN layer increases and the CL peak energy shifts towards red. Moreover, a rather apparent In composition fluctuation is found in the relaxed upper part of InGaN layer as confirmed by CL imaging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new optimized structure of an UTC (uni-traveling-carrier) photodiode is developed and epitaxied by metal-organic chemical vapor deposition. We fabricated a UTC photodiode of 30 mu m in diameter. Theoretical simulation based on drift-diffusion model was used to analyze the space-charge-screening effect in UTC photodiode primarily in two aspects: the carrier concentrations and the space electric field. The simulation results were generally in agreement with the experimental data.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper investigates the major structural parameters, such as crystal quality and strain state of (001)-oriented GaN thin films grown on sapphire substrates by metalorganic chemical vapour deposition, using an in-plane grazing incidence x-ray diffraction technique. The results are analysed and compared with a complementary out-of-plane x-ray diffraction technique. The twist of the GaN mosaic structure is determined through the direct grazing incidence measurement of (100) reflection which agrees well with the result obtained by extrapolation method. The method for directly determining the in-plane lattice parameters of the GaN layers is also presented. Combined with the biaxial strain model, it derives the lattice parameters corresponding to fully relaxed GaN films. The GaN epilayers show an increasing residual compressive stress with increasing layer thickness when the two dimensional growth stage is established, reaching to a maximum level of -0.89 GPa.