1000 resultados para incremento de massa
Resumo:
The culture of the maize is responsive the fertilization with zinc, however, its efficiency can be affected by the method of aplication. Thus, this work had as objective to evaluate the effect of the methods of zinc application in the nutritional state and the initial growth of the culture of the maize. The experiment was in a completely randomized design, with five treatments in four repetitions. The experimental unit was composed for a pot (7 L) filled with a distrofic Red Latosol, clayey texture, with four plants of maize. The treatments had been constituted by four ways of zinc application: in the soil incorporated (3 mg Zn dm(-3)), and located (1 mg Zn dm(-3)); foliar (solution of 23 mg Zn L(-1)); e in seed (40 g Zn kg(-1) of seed) and beyond the witness (control). The treatments had been applied during two cultivation of 42 days, except the Zn incorporated in the soil. In the end of each culture, the cut of the plants for the evaluation of the growth variable (leaf height, number, the diameter of stems and dry matter) and the determination of the zinc text was carried through in the soil and the aerial part. The zinc application promoted increment in the height and the production of matter of the maize. The zinc application soil (incorporated and located), foliar and seed had been similar in the initial development of the culture, however, the foliar way promoted greater absorption of the nutrient for the plant.
Resumo:
Zinc application methods can affect the nutrition and the initial development of the wheat. Thus, the aim of this work was to analyze the different ways of Zn application in the soil, on nutrition and on dry matter production. A completely randomized experimental design with four replications was used. The experiment was composed by the following Zn application treatments: control (no zinc application); soil incorporation, furrow located, seeds treatment and leaf pulverization. The experimental unit was composed of a pot filled with 7 L of soil. Morphological traits for each plant were determined on 52 days after emergence by the evaluations of plant height, internodes number, tillers number and aerial part dry matter. Still, the soil and plant chemical analysis was accomplished. The furrow located method provided larger concentrations of the micronutrient available. The zinc application methods did not influence the initial growth of the wheat plants. The zinc concentration in leaves was influenced by the different application methods, being the leaf pulverization the one that was caused the largest zinc accumulation on aerial part dry matter.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Resumo:
Concrete is the second most consumed product in the world and the incorporation of the Sugar Bagasse Ash (SBA) into this material can provide solutions for the utilization of by-products from other industries, thus reducing the environmental impact. The general aim of this dissertation focuses on analyzing the mechanical behavior of concrete with addition of SBA from three different species of sugar cane, through tests of consistency, compressive strength, porosity, absorption, voids and Scanning Electron Microscopy (SEM). Were prepared 13 specimens for each specific pattern and level of incorporation of SBA (10%, 20% and 30%) of the three varieties collected, totaling 130 samples of concrete. The trait was employed 1:2:3 (cement: sand: aggregates) in relation to the cement mass with a water / cement ratio of 0.532 and 1% additive Tec 400 Mult also based on the weight of cement. According to the results obtained in this study, it was concluded that the variety of cane sugar, used in the production of the CBC, influenced the mechanical behavior of the resulting concrete. All concrete with addition of SBA, reported a reduction of at least 10% in the properties related to permeability and an increase in the compressive strength of at least 16% compared to standard concrete at 28 days
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The construction industry is responsible for generating a lot of waste because of their activities. Consequently, it is noticeable the occurrence of environmental problems in terms of its disposal in inappropriate places. Faced with this problem, some studies have been conducted with the aim of developing technologies and alternatives for recycling construction and demolition waste (CDW), motivated by the scarcity of natural resources and reduction of environmental problems generated. The research aims to characterize the recycled aggregates derived from construction and demolition waste (CDW) produced in the Greater Natal-RN and analyze the performance of mortar coating produced with recycled aggregates. The study includes the chemical , physical and microstructural characterization of recycled aggregates , as well as conducting microscopic analysis and laboratory tests in the fresh state (consistency index , water retention , bulk density and content of entrained air ) and in the hardened state ( compressive strength , tensile strength in bending , water absorption by immersion and capillary , mass density and void ratio ) for mortars produced from different levels of substitution of aggregates ( 0, 20 %, 40 %, 60 %, 80 % and 100 %). The results were satisfactory, providing mortars produced with recycled aggregates, smaller mass density and dynamic modulus values as well as an increase in the rates of absorption and porosity. The tensile strength in bending and compression for TP1 (1:2:8) trait were lower for mortars produced with recycled aggregates and the best result was 20% for replacement. For the TP2 (1:8) mapping, there was an increase in resistance to traction and compression and the best result was for 100% replacement of natural aggregates by recycled. The experiments led to the conclusion that the technical and economic point of view that the mortars produced with recycled aggregates can be used in construction, only if there is an effective control in production processes of recycled aggregate and at the dosage of mortars
Resumo:
The experiment was conducted at UNESP/FCAV, Jaboticabal, SP, with the objective of evaluating the influence of the rest period and height of the residue post-grazing on the dry matter mass, morphologic composition and on the chemical composition of the Tanzania-grass pre-grazing condition, under rotational grazing. The treatments consisted of the combination of two rest periods (25 and 35 days) and two residue height post-grazing (30 and 50 cm), as a complete randomized design in factorial arrangement 2 x 2, with three replications, with the grazing cycles considered as sub plots. The herbage mass of stem, leaves, dead material and the leaf: stem ratio were significantly influenced (P<0.05) by the grazing cycles. The percentage of CP in the leaf and stem and the NDF in the stem, leaf and whole plant were influenced positively (P<0.05) by the grazing cycles. It was observed that the short rest periods associated with the smallest residue height post-grazing presented the best results in terms of herbage mass and chemical characteristics of the herbage.
Resumo:
Although silicon has not been considered an essential element for plant growth and development, it has provided several benefits for the rice crop, especially under biotic and abiotic stress. The objective of this work was to evaluate macronutrient and silicon levels in upland rice cultivars cropped under water deficit and silicon fertilization. The experiment was carried out in greenhouse and the design was the completely randomized block, analyzed as a 2 x 2 x 2 factorial, which consisted of two cultivars, 'Maravilha' (modern group) and 'Caiapo' (traditional group), two silicon rates (0 and 350 kg ha(-1)) and two soil water tensions (-0.025 MPa and -0.050 MPa). Plant dry matter of the 'Maravilha' cultivar was higher compared to the other material. Higher soil water tensions decreased plant dry matter and macronutrient levels. Upland rice cultivars respond distinctively to soil water tensions and silicon rates.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Quassia amara é arbusto de 3 a 6 metros de altura, tendo sido retirado indiscriminadamente das florestas para extrair do caule as quassinas usadas na indústria farmacêutica e como inseticida em agricultura orgânica. Não se tem muita informação técnica acerca do crescimento desta espécie para subsidiar estratégias de manejo sustentado. Este trabalho tem como objetivo avaliar o crescimento de Q. amara L. em cultivo agroecológico na Costa Rica. O trabalho consistiu em realizar avaliações do desenvolvimento de indivíduos de Q. amara em parcelas permanentes de medições, instaladas em meio às plantações desta espécie em consórcio com essências arbóreas. Foram efetuadas medições de diâmetro do caule a 10 cm do solo e altura total. Foi observado que em função das taxas de crescimento vegetal e incrementos médio e corrente anuais (IMA e ICA), mesmo após cinco anos de plantio, a madeira de Quassia amara para extração de quassinas não está pronta para colheita.
Resumo:
The red ceramics and structural ceramics, as they are known, include ceramic materials made by blocks of seals and structures, bricks, tiles, smail flagstones manacles, rustic floors and ornamental materials. Their fabrication uses raw material such as clay and clay sites, with some content of impurity. It has good durability and mechanical strength to compression, low cost, making it one of the mainly used materials in civil engineering. The incorporation of many industrial activities residue to ceramic products is a technological alternative for reducing the environmental impact caused by its carefree disposal. This incorporation can promote chemical change and inertness of metals from residue, by fixation in the glassy phase of ceramic during the burning stage. The main aim of this project is to study the technical feasibility of the addition of ceramic oven ash into formulations of mass for structural ceramics. In this project two kinds of clay (plastic and non-plastic) were used, as well as the ash from firewood used in the process of burning of structural ceramics. A group of experiments was outlined, which permitted the evaluation of the influence of the burning cycle in different temperatures of the ash content in formulations for ceramic blocks through technological properties, mechanical behavior and microstructure. Five samples were processed of each one of the masses of plastic and non-plastic clay without addition of ash and with addition of ash on the percentages of 10 % and 20 %, for temperatures of 850 °C, 950 °C, 1050 °C and 1150 °C, obtained through sinterization process. Among the studied compositions, the one which presented best performance was the mass of clay with 10 % of ash, at temperature of 1150 °C, with the smallest absorption of water, the smallest apparent porosity, specific apparent mass a bit over the others and greatest mechanical resistance to flexion. The composition made confirmed the technical feasibility of the use of ash in the mass for structural ceramics with maintenance of its necessary characteristics for its purposes
Resumo:
In this study were conducted experimental procedures for determination of variation of the expandability of rigid polyurethane foam (PUR) from a natural oil polyol (NOP), specifically the Castor oil plant, Ricinus communis, pure and additions of the vermiculite in phase dispersed in different percentage within a range from 0% to 20%, mass replacement. From the information acquired, were defined the parameters for production of bodies of test, plates obtained through controlled expansion, with the final volume fixed. Initially, the plates were subjected to thermal performance tests and evaluated the temperature profiles, to later be extracted samples duly prepared in accordance with the conditions required for each test. Was proceeded then the measurement of the coefficient of thermal conductivity, volumetric capacity heat and thermal diffusivity. The findings values were compared with the results obtained in the tests of thermal performance, contributing to validation of the same. Ultimately, it was investigated the influence that changes in physical-chemical structure of the material had exerted on the variation of thermophysical quantities through gas pycnometry, scanning electron microscopy (SEM) combined with energy dispersive X-ray fluorescence spectroscopy (EDXRF), infrared spectroscopy using Fourier transform (FTIR), thermogravimetric analysis (TGA) and differential thermal analysis (DTA). Based on the results obtained was possible to demonstrate that all load percentage analyzed promoted an increase in the potential expansion (PE) of the resin. In production of the plates, the composites with density near at the free expansion presented high contraction during the cure, being the of higher density adopted as definitive standard. In the thermal performance tests, the heating and cooling curves of the different composites had presented symmetry and values very close for lines of the temperature. The results obtained for the thermophysical properties of composites, showed little difference in respect of pure foam. The percentage of open pores and irregularities in the morphology of the composites were proportionate to the increment of vermiculite. In the interaction between the matrix and dispersed phase, there were no chemical transformations in the region of interface and new compounds were not generated. The composites of PUR-NOP and vermiculite presented thermal insulating properties near the foam pure and percentage significantly less plastic in its composition, to the formulation with 10% of load
Resumo:
Annular flow is the prevailing pattern in transport and energy conversion systems and therefore, one of the most important patterns in multiphase flow in ducts. The correct prediction of the pressure gradient and heat transfer coefficient is essential for optimizing the system s capacity. The objective of this work is to develop and implement a numerical algorithm capable of predicting hydrodynamic and thermal characteristics for upflow, vertical, annular flow. The numerical algorithm is then complemented with the physical modeling of phenomena that occurs in this flow pattern. These are, turbulence, entrainment and deposition and phase change. For the development of the numerical model, axial diffusion of heat and momentum is neglected. In this way the time-averaged equations are solved in their parabolic form obtaining the velocity and temperature profiles for each axial step at a time, together with the global parameters, namely, pressure gradient, mean film thickness and heat transfer coefficient, as well as their variation in the axial direction. The model is validated for the following conditions: fully-developed laminar flow with no entrainment; fully developed laminar flow with heat transfer, fully-developed turbulent flow with entrained drops, developing turbulent annular flow with entrained drops, and turbulent flow with heat transfer and phase change
Resumo:
The sector of civil construction is strongly related to the red ceramic industry. This sector uses clay as raw material for manufacturing of various products such as ceramic plates. In this study, two types of clay called clay 1 and clay 2 were collected on deposit in Ielmo Marinho city (RN) and then characterized by thermogravimetric analysis (TG/DTG), differential thermal analysis (DTA), X-ray diffraction (XRD), X-ray fluorescence (XRF), rational analysis and particle size distribution and dilatometric analyses. Ceramic plates were manufactured by uniaxial pressing and by extrusion. The plates obtained by pressing were produced from the four formulations called 1, 2, 3 and 4, which presented, respectively, the following proportions by mass: 66.5% clay 1 and 33.5% clay 2, 50% clay 1 and 50% clay 2, 33.5% clay 1 and 66.5% clay 2, 25% clay 1 and 75% clay 2. After firing at 850, 950 and 1050 °C with heating rate of 10 °C/min and soaking time of 30 minutes, the following technological properties were determined: linear firing shrinkage, water absorption, apparent porosity, apparent specific mass and tensile strength (3 points). The formulation containing 25% clay 1 produced plates with most satisfactory results of water absorption and mechanical resistance, because of that it was chosen for manufacturing plates by extrusion. A single firing cycle was established for these plates, which took place as follow: heating rate of 2 °C/min up to 600 ºC with soaking time of 60 minutes, followed by heating using the same rate up to 1050 ºC with soaking time of 30 minutes. After this cycle, the same technological properties investigated in the plates obtained by pressing were determined. The results indicate (according to NRB 13818/1997) that the plates obtained by pressing from the mixture containing 25 wt% clay 1, after firing at 1050 °C, reach the specifications for semi-porous coating (BIIb). On the other hand, the plates obtained by extrusion were classified as semi-stoneware (group AIIa)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)