917 resultados para glutamate decarboxylase antibody
Resumo:
Levels of rabies virus neutralization antibody in sera from vaccinated dogs and cattle were either measured by mouse neutralization test (MNT) or by rapid fluorescent focus inhibition test (RFFIT), performed on CER monolayers. The two tests were compared for their ability to detect the 0.5 International Units/ml (I.U.) recommended by the World Health Organization (WHO) as the minimum response for proof of rabies immunization. A significant correlation was found between the two tests (n = 211; r = 0.9949 in dogs and 0.9307 in cows, p < 0.001), good sensitivity (87.5%), specificity (94.7%) and agreement (96.6%) as well. RFFIT method standardized on CER cell system for neutralizing antibodies detection turns the diagnosis easier and less expensive, specially when a great number of samples must be tested from endemic areas as commonly found in Brazil. (c) 2005 the International Association for Biologicals. Published by Elsevier Ltd. All rights reserved.
Resumo:
Ten young partridges (Rhynchotus rufescens) were vaccinated with the lentogenic strain of Newcastle disease virus. Another eight unvaccinated birds were kept in close contact with the treated flock. Antibodies levels were measured over the course of 3 mo in all birds using the hemagglutination inhibition (HI) test and the liquid-phase blocking enzyme-linked immunosorbent assay (LPB-ELISA). The LPB-ELISA was standardized, and the results were compared with those obtained with the HI test. Antibodies increased after 23 days postvaccination in 16 birds with no side effects as determined by both the HI test and the LPB-ELISA.
Resumo:
The aim of this study was to evaluate the indirect immunoperoxidase virus neutralization (IPVN) and mouse neutralization test (MNT) to detect antibodies against rabies virus from vaccinated dogs and cattle. The IPVN was set up for the ability to measure 0.5 International Units/ml (IU) of antibody required by the World Health Organization and the Office International des Epizooties as the minimum response for proof of rabies immunization. IPVN was developed and standardized in chicken embryo related (CER) cell line when 141 dog and 110 cattle sera were applied by serial five-fold dilutions (1:5, 1:25, 1:125) as well as the positive and negative reference controls, all added in four adjacent wells, of 96-well microplates. A 50 µl amount of CVS32 strain dilution containing 50-200 TCID50/ml was mixed to each serum dilution, and after 90 min 50 µl of 3 x 10(5) cells/mlcell suspension added to each well. After five days of incubation, the monolayers were fixed and the IPVN test performed. The correlation coefficient between the MNT and IPVN performed in CER cells was r = 0.9949 for dog sera (n = 100) and r = 0.9307 for cattle sera (n = 99), as well as good specificity (94.7%), sensitivity (87.5%), and agreement (96.6%) were also obtained. IPVN technique can adequately identify vaccinated and unvaccinated animals, even from low-responding vaccinated animals, with the advantage of low cost and faster then MNT standard test.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The excitatory amino acid L-glutamate injected into the nucleus of the solitary tract (NTS) in unanesthetized rats similar to peripheral chemoreceptor activation increases mean arterial pressure (MAP) and reduces heart rate. In this study, we investigated the effects of acute (I day) and chronic (15 days) electrolytic lesions of the preoptic-periventricular tissue surrounding the anteroventral third ventricle (AV3V region) on the pressor and bradycardic responses induced by injections of L-glutamate into the NTS or peripheral chemoreceptor activation in unanesthetized rats. Male Holtzman rats with sham or electrolytic AV3V lesions and a stainless steel cannula implanted into the NTS were used. Differently from the pressor responses (28 +/- 3 mm Hg) produced by injections into the NTS of sham-lesioned rats, L-glutamate (5 nmol/ 100 nl) injected into the NTS reduced MAP (-26 +/- 8 mm Hg) or produced no effect (2 7 turn Hg) in acute and chronic AV3V-lesioned rats, respectively. The bradycardia to L-glutamate into the NTS and the cardiovascular responses to chemoreflex activation with intravenous potassium cyanide or to baroreflex activation with intravenous phenylephrine or sodium nitroprusside were not modified by AV3V lesions. The results show that the integrity of the AV3V region is essential for the pressor responses to L-glutamate into the NTS but not for the pressor responses to chemoreflex activation, suggesting dissociation between the central mechanisms involved in these responses. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Peripheral chemoreflex activation with potassium cyanide (KCN) in awake rats or in the working heart-brainstem preparation (WHBP) produces: (a) a sympathoexcitatory/pressor response; (b) bradycardia; and (c) an increase in the frequency of breathing. Our main aim was to evaluate neurotransmitters involved in mediating the sympathoexcitatory component of the chemoreflex within the nucleus tractus solitarii (NTS). In previous studies in conscious rats, the reflex bradycardia, but not the pressor response, was reduced by antagonism of either ionotropic glutamate or purinergic P2 receptors within the NTS. In the present study we evaluated a possible dual role of both P2 and NMDA receptors in the NTS for processing the sympathoexcitatory component (pressor response) of the chemoreflex in awake rats as well as in the WHBP. Simultaneous blockade of ionotropic glutamate receptors and P2 receptors by sequential microinjections of kynurenic acid (KYN, 2 nmol (50 nl)(-1)) and pyridoxalphosphate-6-azophenyl-2',4'-disulphonate (PPADS, 0.25 nmol (50 nl)(-1)) into the commissural NTS in awake rats produced a significant reduction in both the pressor (+38 +/- 3 versus +8 +/- 3 mmHg) and bradycardic responses (-172 +/- 18 versus -16 +/- 13 beats min(-1); n = 13), but no significant changes in the tachypnoea measured using plethysmography (270 +/- 30 versus 240 +/- 21 cycles min(-1), n = 7) following chemoreflex activation in awake rats. Control microinjections of saline produced no significant changes in these reflex responses. In WHBP, microinjection of KYN (2 nmol (20 nl)(-1)) and PPADS (1.6 nmol (20 nl)(-1)) into the commissural NTS attenuated significantly both the increase in thoracic sympathetic activity (+52 +/- 2% versus +17 +/- 1%) and the bradycardic response (-151 +/- 17 versus -21 +/- 3 beats min(-1)) but produced no significant changes in the increase of the frequency of phrenic nerve discharge (+0.24 +/- 0.02+0.20 +/- 0.02 Hz). The data indicate that combined microinjections of PPADS and KYN into the commissural NTS in both awake rats and the WHBP are required to produce a significant reduction in the sympathoexcitatory response (pressor response) to peripheral chemoreflex activation. We conclude that glutamatergic and purinergic mechanisms are part of the complex neurotransmission system of the sympathoexcitatory component of the chemoreflex at the level of the commissural NTS.
Resumo:
Neurons from the rostral ventrolateral medulla (RVLM) directly activate sympathetic preganglionic neurons in the spinal cord. Hypertensive responses and sympathetic activation produced by different stimuli are strongly affected by lesions of the preoptic periventricular tissue surrounding the anteroventral third ventricle (AV3V region). Therefore, in the present study, we investigated the effects of acute (1 day) and chronic (IS days) electrolytic lesions of the AV3V region on the pressor responses produced by injections of the excitatory amino acid L-glutamate into the RVLM of unanesthetized rats. Male Holtzman rats with sham or electrolytic AV3V lesions and a stainless steel cannula. implanted into the RVLM were used. The pressor responses produced by injections of L-glutamate (1, 5 and 10 nmol/100 nl) into the RVLM were reduced 1 day (9 +/- 4, 39 +/- 6 and 37 +/- 4 mm Hg, respectively) and 15 days after AV3V lesions (13 +/- 6, 39 +/- 4 and 43 +/- 4 mm Hg, respectively, vs. sham lesions: 29 +/- 3, 50 +/- 2 and 58 +/- 3 mm Hg, respectively). Injections of L-glutamate into the RVLM in sham or AV3V-lesioned rats produced no significant change in the heart rate (HR). Baroreflex bradycardia and tachycardia produced by iv phenylephrine or sodium nitroprusside, respectively, and the pressor and bradycardic responses to chemoreflex activation with iv potassium cyanide were not modified by AV3V lesions. The results suggest that signals from the AV3V region are important for sympathetic activation induced by L-glutamate into the RVLM. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Injections of the excitatory amino acid L-glutamate (L-glu) into the rostral ventrolateral medulla (RVLM) directly activate the sympathetic nervous system and increase mean arterial pressure (MAP). A previous study showed that lesions of the anteroventral third ventricle region in the forebrain reduced the pressor response to L-glu into the RVLM. In the present study we investigated the effects produced by injections of atropine (cholinergic antagonist) into the lateral ventricle (LV) on the pressor responses produced by L-ghl into the RVLM. Male Holtzman rats (280-320 g, n=5 to 12/group) with stainless steel cannulas implanted into the RVLM, LV or 4th ventricle (4th V) were used. MAP and heart rate (HR) were recorded in unanesthetized rats. After saline into the LV, injections of L-glu (5 nmol/100 nl) into the RVLM increased MAP (51 +/- 4 mm Hg) without changes in HR. Atropine (4 nmol/1 PI) injected into the LV reduced the pressor responses to L-glu into the RVLM (36 +/- 5 mm Hg), However, atropine at the same dose into the 4th V or directly into the RVLM did not modify the pressor responses to L-glu into the RVLM (45 +/- 2 and 49 +/- 4 mm Hg, respectively, vs. control: 50 +/- 4mmHg). Central cholinergic blockade did not affect baro and chemoreflex nor the basal MAP and HR. The results suggest that cholinergic mechanisms probably from forebrain facilitate or modulate the pressor responses to L-glu into the RVLM. The mechanism is activated by acetylcholine in the forebrain, however, the neurotransmitter released in the RVLM to facilitate the effects of glutamate is not acetylcholine. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Propolis is a beehive product with a very complex chemical composition, widely used in folk medicine because of its several therapeutic activities. Its biological properties and chemical composition may vary according to the geographic location and to the different plant sources. The possible mechanism of action of propolis as well as of its active compounds has been the subject of researchers in recent years. In this work, first we reported the results of our study on the seasonal effect of the immunomodulatory action of propolis on antibody production in bovine serum albumin (BSA)-immunized rats. Then, we compared the effect of Brazilian and Bulgarian propolis, some isolated compounds and Baccharis extract on anti-BSA antibody levels. Based on the results, we conclude that propolis stimulates antibody production, independently of the season and geographic origin. Caffeic acid, quercetin and Baccharis extract had no effect on antibody production, although the importance of isolated compounds is well reported in other biological assays. Propolis action is a consequence of plant-derived products with synergic effects. while isolated compounds or extracts from its plant sources had no effect in this assay. (c) 2005 Elsevier B.V.. All rights reserved.
Resumo:
Mice genetically selected for high (H) and low (L) antibody production (HIV-A and L-IV-A) were used in an experimental model of paracoccidioidomycosis. In a previous work, it was observed that male HIV-A animals were more susceptible to the infection due to adrenal gland damage. Male HIV-A and LIV-A animals were intravenously inoculated with Paracoccidioides brasiliensis (strain 18) and sacrificed 2, 4, 6, 8 and 10 weeks after inoculation. At each time interval, lungs and adrenals were removed to estimate recoverability of the fungus, as well as to determine Th1 (IFN-gamma, TNF-alpha) and Th2 (IL-4 and IL-10) cytokine profiles. While viable fungi recoverability from the lungs of HIV-A mice was higher after 4 and 8 weeks, there was less fungal recovery from the adrenals of LIV-A animals after the 2nd week, with total fungal elimination after the 8th week. With regard to Th2 cytokines, there was an inhibition in IL-4 production in the organs from infected animals, the extent of which varied according to the organ and the time period after initiation of infection. IL-10 production was found to be lower in both organs. Determination of Th1 cytokines revealed that IFN-gamma production increased in both organs, mainly in the adrenal of LIV-A after 8 and 10 weeks, when these animals showed a total fungal elimination. A significant difference was observed between HIV-A and LIV-A concerning TNF-alpha production in both organs and at all recovery times, in that LIV-A produced a higher level of this cytokine, mainly in the adrenal. These results may explain the high susceptibility of HIV-A to P. brasiliensis infection, is due, at least in part, to adrenal involvement. The higher production of Th1 cytokines by LIV-A in comparison to HIV-A mice may account for LIV-A resistance to P. brasiliensis infection. Our data reveal the importance of this experimental model in the study of the adrenal involvement in paracoccidioidomycosis, since this gland may be highly compromised in the patients, leading to the development of Addison's Disease.