788 resultados para dINSCY, subspace clustering, data mining, parallelo, distribuito, algoritmo
Resumo:
Electricity markets are complex environments with very particular characteristics. MASCEM is a market simulator developed to allow deep studies of the interactions between the players that take part in the electricity market negotiations. This paper presents a new proposal for the definition of MASCEM players’ strategies to negotiate in the market. The proposed methodology is multiagent based, using reinforcement learning algorithms to provide players with the capabilities to perceive the changes in the environment, while adapting their bids formulation according to their needs, using a set of different techniques that are at their disposal.
Resumo:
This paper consist in the establishment of a Virtual Producer/Consumer Agent (VPCA) in order to optimize the integrated management of distributed energy resources and to improve and control Demand Side Management DSM) and its aggregated loads. The paper presents the VPCA architecture and the proposed function-based organization to be used in order to coordinate the several generation technologies, the different load types and storage systems. This VPCA organization uses a frame work based on data mining techniques to characterize the costumers. The paper includes results of several experimental tests cases, using real data and taking into account electricity generation resources as well as consumption data.
Resumo:
Many current e-commerce systems provide personalization when their content is shown to users. In this sense, recommender systems make personalized suggestions and provide information of items available in the system. Nowadays, there is a vast amount of methods, including data mining techniques that can be employed for personalization in recommender systems. However, these methods are still quite vulnerable to some limitations and shortcomings related to recommender environment. In order to deal with some of them, in this work we implement a recommendation methodology in a recommender system for tourism, where classification based on association is applied. Classification based on association methods, also named associative classification methods, consist of an alternative data mining technique, which combines concepts from classification and association in order to allow association rules to be employed in a prediction context. The proposed methodology was evaluated in some case studies, where we could verify that it is able to shorten limitations presented in recommender systems and to enhance recommendation quality.
Resumo:
Audiometer systems provide enormous amounts of detailed TV watching data. Several relevant and interdependent factors may influence TV viewers' behavior. In this work we focus on the time factor and derive Temporal Patterns of TV watching, based on panel data. Clustering base attributes are originated from 1440 binary minute-related attributes, capturing the TV watching status (watch/not watch). Since there are around 2500 panel viewers a data reduction procedure is first performed. K-Means algorithm is used to obtain daily clusters of viewers. Weekly patterns are then derived which rely on daily patterns. The obtained solutions are tested for consistency and stability. Temporal TV watching patterns provide new insights concerning Portuguese TV viewers' behavior.
Resumo:
Introduction: A major focus of data mining process - especially machine learning researches - is to automatically learn to recognize complex patterns and help to take the adequate decisions strictly based on the acquired data. Since imaging techniques like MPI – Myocardial Perfusion Imaging on Nuclear Cardiology, can implicate a huge part of the daily workflow and generate gigabytes of data, there could be advantages on Computerized Analysis of data over Human Analysis: shorter time, homogeneity and consistency, automatic recording of analysis results, relatively inexpensive, etc.Objectives: The aim of this study relates with the evaluation of the efficacy of this methodology on the evaluation of MPI Stress studies and the process of decision taking concerning the continuation – or not – of the evaluation of each patient. It has been pursued has an objective to automatically classify a patient test in one of three groups: “Positive”, “Negative” and “Indeterminate”. “Positive” would directly follow to the Rest test part of the exam, the “Negative” would be directly exempted from continuation and only the “Indeterminate” group would deserve the clinician analysis, so allowing economy of clinician’s effort, increasing workflow fluidity at the technologist’s level and probably sparing time to patients. Methods: WEKA v3.6.2 open source software was used to make a comparative analysis of three WEKA algorithms (“OneR”, “J48” and “Naïve Bayes”) - on a retrospective study using the comparison with correspondent clinical results as reference, signed by nuclear cardiologist experts - on “SPECT Heart Dataset”, available on University of California – Irvine, at the Machine Learning Repository. For evaluation purposes, criteria as “Precision”, “Incorrectly Classified Instances” and “Receiver Operating Characteristics (ROC) Areas” were considered. Results: The interpretation of the data suggests that the Naïve Bayes algorithm has the best performance among the three previously selected algorithms. Conclusions: It is believed - and apparently supported by the findings - that machine learning algorithms could significantly assist, at an intermediary level, on the analysis of scintigraphic data obtained on MPI, namely after Stress acquisition, so eventually increasing efficiency of the entire system and potentially easing both roles of Technologists and Nuclear Cardiologists. In the actual continuation of this study, it is planned to use more patient information and significantly increase the population under study, in order to allow improving system accuracy.
Resumo:
Projecto para obtenção do grau de Mestre em Engenharia Informática e de computadores
Resumo:
Perante a evolução constante da Internet, a sua utilização é quase obrigatória. Através da web, é possível conferir extractos bancários, fazer compras em países longínquos, pagar serviços sem sair de casa, entre muitos outros. Há inúmeras alternativas de utilização desta rede. Ao se tornar tão útil e próxima das pessoas, estas começaram também a ganhar mais conhecimentos informáticos. Na Internet, estão também publicados vários guias para intrusão ilícita em sistemas, assim como manuais para outras práticas criminosas. Este tipo de informação, aliado à crescente capacidade informática do utilizador, teve como resultado uma alteração nos paradigmas de segurança informática actual. Actualmente, em segurança informática a preocupação com o hardware é menor, sendo o principal objectivo a salvaguarda dos dados e continuidade dos serviços. Isto deve-se fundamentalmente à dependência das organizações nos seus dados digitais e, cada vez mais, dos serviços que disponibilizam online. Dada a mudança dos perigos e do que se pretende proteger, também os mecanismos de segurança devem ser alterados. Torna-se necessário conhecer o atacante, podendo prever o que o motiva e o que pretende atacar. Neste contexto, propôs-se a implementação de sistemas de registo de tentativas de acesso ilícitas em cinco instituições de ensino superior e posterior análise da informação recolhida com auxílio de técnicas de data mining (mineração de dados). Esta solução é pouco utilizada com este intuito em investigação, pelo que foi necessário procurar analogias com outras áreas de aplicação para recolher documentação relevante para a sua implementação. A solução resultante revelou-se eficaz, tendo levado ao desenvolvimento de uma aplicação de fusão de logs das aplicações Honeyd e Snort (responsável também pelo seu tratamento, preparação e disponibilização num ficheiro Comma Separated Values (CSV), acrescentando conhecimento sobre o que se pode obter estatisticamente e revelando características úteis e previamente desconhecidas dos atacantes. Este conhecimento pode ser utilizado por um administrador de sistemas para melhorar o desempenho dos seus mecanismos de segurança, tais como firewalls e Intrusion Detection Systems (IDS).
Resumo:
Tese submetida à Universidade Portucalense para obtenção do grau de Mestre em Informática, elaborada sob a orientação de Prof. Doutor Reis Lima e Eng. Jorge S. Coelho.
Resumo:
Dissertation submitted in partial fulfilment of the requirements for the Degree of Master of Science in Geospatial Technologies
Resumo:
ABSTRACT This study aimed to describe the digital disease detection and participatory surveillance in different countries. The systems or platforms consolidated in the scientific field were analyzed by describing the strategy, type of data source, main objectives, and manner of interaction with users. Eleven systems or platforms, developed from 1996 to 2016, were analyzed. There was a higher frequency of data mining on the web and active crowdsourcing as well as a trend in the use of mobile applications. It is important to provoke debate in the academia and health services for the evolution of methods and insights into participatory surveillance in the digital age.
Resumo:
Dissertação de Mestrado
Resumo:
Mestrado em Engenharia Electrotécnica – Sistemas Eléctricos de Energia
Resumo:
Relatório de Projecto apresentado como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Dissertação apresentada como requisito parcial para obtenção do grau de Mestre em Estatística e Gestão de Informação
Resumo:
Dissertação apresentada como requisito parcial para a obtenção do grau de Mestre em Estatística e Gestão de Informação