988 resultados para controlling mechanism


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four new neutral copper-azido polymers Cu-6(N-3)(12)(aem)(2)](n)(1), Cu-6(N-3)(12)(dmeen)(2)(H2O)(2)](n) (2), Cu-6(N-3)(12)(N,N'-dmen)(2)](n) (3), and Cu-6(N-3)(12)(hmpz)(2)](n) (4) aem = 4-(2-aminoethyl)morpholine; dmeen = N,N-dimethyl-N'-ethylethylenediamine; N,N'-dmen = N,N'-dimethylethylenediamine and hmpz = homopiperazine] have been synthesized by using 0.33 mol equiv of the chelating diamine ligands with Cu(NO3)(2)center dot 3H(2)O/CuCl2 center dot 2H(2)O and an excess of NaN3. Single crystal X-ray structures show that the basic unit of these complexes, especially 1-3, contains very similar Cu-6(II) building blocks. But the overall structures of these complexes vary widely in dimensionality. While 1 is three-dimensional (3D) in nature, 2 and 3 have a two-dimensional (2D) arrangement (with different connectivity) and 4 has a one-dimensional (1D) structure. Cryomagnetic susceptibility measurements over a wide range of temperature exhibit dominant ferromagnetic behavior in all the four complexes. The experimental susceptibility data have been analyzed by some theoretical model equations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following an earlier study (J. Am. Chem Soc. 2007, 129, 4470) describing a very unusual growth kinetics of ZnO nanoparticles, we critically evaluate here the proposed mechanism involving a crucial role of the alkali base ion in controlling the growth of ZnO nanoparticles using other alkali bases, namely, LiOH and KOH. While confirming the earlier conclusion of the growth of ZnO nanoparticles being hindered by an effective passivating layer of cations present in the reaction mixture and thereby generalizing this phenomenon, present experimental data reveal an intriguing nonmonotonic dependence of the passivation efficacy on the ionic size of the alkali base ion. This unexpected behavior is rationalized on the basis of two opposing factors: (a) solvated cationic radii and (b) dissociation constant of the base.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Drug-drug interactions may cause serious, even fatal clinical consequences. Therefore, it is important to examine the interaction potential of new chemical entities early in drug development. Mechanism-based inhibition is a pharmacokinetic interaction type, which causes irreversible loss of enzyme activity and can therefore lead to unusually profound and long-lasting consequences. The in vitro in vivo extrapolation (IVIVE) of drug-drug interactions caused by mechanism-based inhibition is challenging. Consequently, many of these interactions have remained unrecognised for many years. The concomitant use of the fibrate-class lipid-lowering agent gemfibrozil increases the concentrations of some drugs and their effects markedly. Even fatal cases of rhabdomyolysis occurred in patients administering gemfibrozil and cerivastatin concomitantly. One of the main mechanisms behind this effect is the mechanism-based inhibition of the cytochrome P450 (CYP) 2C8 enzyme by a glucuronide metabolite of gemfibrozil leading to increased cerivastatin concentrations. Although the clinical use of gemfibrozil has clearly decreased during recent years, gemfibrozil is still needed in some special cases. To enable safe use of gemfibrozil concomitantly with other drugs, information concerning the time and dose relationships of CYP2C8 inhibition by gemfibrozil should be known. This work was carried out as four in vivo clinical drug-drug interaction studies to examine the time and dose relationships of the mechanism-based inhibitory effect of gemfibrozil on CYP2C8. The oral antidiabetic drug repaglinide was used as a probe drug for measuring CYP2C8 activity in healthy volunteers. In this work, mechanism-based inhibition of the CYP2C8 enzyme by gemfibrozil was found to occur rapidly in humans. The inhibitory effect developed to its maximum already when repaglinide was given 1-3 h after gemfibrozil intake. In addition, the inhibition was shown to abate slowly. A full recovery of CYP2C8 activity, as measured by repaglinide metabolism, was achieved 96 h after cessation of gemfibrozil treatment. The dose-dependency of the mechanism-based inhibition of CYP2C8 by gemfibrozil was shown for the first time in this work. CYP2C8 activity was halved by a single 30 mg dose of gemfibrozil or by twice daily administration of less than 30 mg of gemfibrozil. Furthermore, CYP2C8 activity was decreased over 90% by a single dose of 900 mg gemfibrozil or twice daily dosing of approximately 100 mg gemfibrozil. In addition, with the application of physiological models to the data obtained in the dose-dependency studies, the major role of mechanism-based inhibition of CYP2C8 in the interaction between gemfibrozil and repaglinide was confirmed. The results of this work enhance the proper use of gemfibrozil and the safety of patients. The information related to time-dependency of CYP2C8 inhibition by gemfibrozil may also give new insights in order to improve the IVIVE of the drug-drug interactions of new chemical entities. The information obtained by this work may be utilised also in the design of clinical drug-drug interaction studies in the future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to depict the mechanism of coalescence in fibrous bed coalescers, a model coalescer was fabricated. Both water/oil and oil/water dispersions were run through this model coalescer to check for coalescence on PTFE and glass surfaces. The equilibrium contact angle and the dynamic contact angle of the dispersed drops were measured on these surfaces in the presence of the continuous phase. Coalescence was monitored using a microscope. Based on these observations a mechanism of coalescence in the model coalescer is proposed. Different modes of coalescence are correlated to the equilibrium contact angle and the dynamic contact angle. Deposition of dirt on the coalescing surface is observed to result in change of wettability, leading to redispersion of the already coalesced dispersed phase into larger droplets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel mechanism is proposed for efficient manipulation of transport forces acting on the droplets during spray pyrolytic deposition of thin films. A ‘‘burst mode’’ technique of spraying is used to adjust the deposition conditions so as to transport the droplets under the new mechanism. Transparent, conducting thin films of undoped tin oxide prepared by this method showed significant improvement in growth rate. The films are found to be of fairly good quality with optical transmission of 82% and sheet resistance of 35 Ω/☒. The films are chemically homogeneous and grow preferentially along 〈200〉 direction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small angle X-ray scattering (SAXS) studies of poly2-methoxy-5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) with varying conjugation, and polyethylene dioxythiophene complexed with polystyrene sulfonate (PEDOT-PSS) in different solvents have shown the importance of the role of pi-electron conjugation and solvent-chain interactions in controlling the chain conformation and assembly. In MEH-PPV, by increasing the extent of conjugation from 30 to 100%, the persistence length (l(p)) increases from 20 to 66 angstrom. Moreover, a pronounced second peak in the pair distribution function has been observed in the fully conjugated chain, at larger length scales. This feature indicates that the chain segments tend to self-assemble as the conjugation along the chain increases. In the case of PEDOT-PSS, the chains undergo solvent induced expansion and enhanced chain organization. The clusters formed by chains are better correlated in dimethyl sulfoxide (DMSO) solution than water, as observed in the scattered intensity profiles. The values of radius of gyration and the exponent (water: 2.6, DMSO: 2.31) of power-law decay, obtained from the unified scattering function (Beaucage) analysis, give evidence for chain expansion from compact (in water) to an extended coil in DMSO solutions, which is consistent with the Kratky plot analysis. The mechanism of this transition and the increase in dc conductivity of PEDOT-PSS in DMSO solution are discussed. The onset frequency for the increase in ac conduction, as well as its temperature dependence, probes the extent of the connectivity in the PEDOT-PSS system. The enhanced charge transport in PEDOT-PSS in DMSO is attributed to the extended chain conformation, as observed in the SAXS results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spironaphthalenones 1b–g on reaction with hydroxylamine hydrochloride gave the expected pyrrolotropones 2b–g. Furanotropone 6, postulated as an intermediate in the formation of pyrrolotropones, remained unchanged on reaction with hydroxylamine hydrochloride in ethanol. Reaction of unsymmetrical spironaphthalenones 1h–o with NH2OH.HCl gave the rearranged pyrrolotropones 2h–o.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A mechanism involving the intermediacy of nitrene 5, formed from the oxime of spironaphthalenone 1 by acid catalysed dehydration, has been proposed to explain the formation of pyrrolotropones/pyrrolo esters from spironaphthalenones. The initially formed nitrene rearranges to the isopyrrole 6, which either undergoes sigmatropic migration to the pyrrolotropone 2 or adds alcohol to form the pyrrolo ester depending on substitution at 1′ position. The isopyrrole intermediate 6 has been trapped as a Diels-Alder adduct 8.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The PbS quantum dots synthesized in PVA are used to investigate their photoluminescence (PL) response to various ions such as Zn, Cd, Hg, Ag, Cu, Fe, Mn, Co, Cr and Ni ions. The enhancement in the photoluminescence intensity is observed with specific ions namely Zn, Cd, Hg and Ag. Among these four ions, the PL response to Hg and Ag even at sub-micro-molar concentrations is quite high, approximately an order of magnitude higher than Zn and Cd. It is interesting to observe that the change in Pb and S molar ratio has profound effect on the selectivity of these ions. The samples prepared under excess of S are quite effective compared to Pb. Indeed, the later one has hardly any effect on the photoluminescence response. These results also indicate that the sensitivity of these QDs could be fine-tuned by controlling the S concentration at the surface. Contrary to the above, Cu, Fe and Co quenches the photoluminescence. Another interesting property of PbS in PVA observed is photo-brightening mechanism due to the curing of the polymer with laser. However, the presence of excess ions at the surface changes its property to photo-darkening/brightening that depends on the direction of carrier transfer mechanism (from QDs to the surface adsorbed metal ions or vice-versa), which is an interesting feature for metal ion detectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a robust strategy for obtaining a high dispersion of ultrafine Pt and PtRu nanoparticles on graphene by exploiting the nucleation of a metal precursor phase on graphite oxide surfaces. Our method opens up new possibilities to engineer graphene-based hybrids for applications in multifunctional nanoscale devices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Failure to repair DNA double-strand breaks (DSBs) can lead to cell death or cancer. Although nonhomologous end joining (NHEJ) has been studied extensively in mammals, little is known about it in primary tissues. Using oligomeric DNA mimicking endogenous DSBs, NHEJ in cell-free extracts of rat tissues were studied. Results show that efficiency of NHEJ is highest in lungs compared to other somatic tissues. DSBs with compatible and blunt ends joined without modifications, while noncompatible ends joined with minimal alterations in lungs and testes. Thymus exhibited elevated joining, followed by brain and spleen, which could be correlated with NHEJ gene expression. However, NHEJ efficiency was poor in terminally differentiated organs like heart, kidney and liver. Strikingly, NHEJ junctions from these tissues also showed extensive deletions and insertions. Hence, for the first time, we show that despite mode of joining being generally comparable, efficiency of NHEJ varies among primary tissues of mammals.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The integrated diffusion coefficient of the phases and the tracer diffusion coefficients of the species are determined in the Nb-Si system by the diffusion couple technique. The diffusion rate of Si is found to be faster than that of Nb in both the NbSi2 and Nb5Si3 phases. The possible atomic mechanism of diffusion is discussed based on the crystal structure and on available details of the defect concentration data. The faster diffusion rate of Si in the Nb5Si3 phase is found to be unusual. The growth mechanism of the phases is also discussed on the basis of the data calculated in this study. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molecular constraints for the localization of active site directed ligands (competitive inhibitors and substrates) in the active site of phospholipase A2 (PLA2) are characterized. Structure activity relationships with known inhibitors suggest that the head : group interactions dominate the selectivity as well as a substantial part of the affinity. The ab initio fitting of the amide ligands in the active site was carried out to characterize the head group interactions. Based on a systematic coordinate space search, formamide is docked with known experimental constraints such as coordination of the carbonyl group to Ca2+ and hydrogen bond between amide nitrogen and ND1 of His48. An optimal position for a bound water molecule is identified and its significance for the catalytic mechanism is postulated. Unlike the traditional ''pseudo-triad'' mechanism, the ''Ca-coordinatedoxyanion'' mechanism proposed here invokes activation of the catalytic water to form the oxyanion in the coordination sphere of calcium. As it attacks the carbonyl carbon of the ester, a near-tetrahedral intermediate is formed. As the second proton of the catalytic water is abstracted by the ester oxygen, its reorientation and simultaneous cleavage form hydrogen bond with ND1 of His48. In this mechanism of esterolysis, a catalytic role for the water co-ordinated to Ca2+ is recognised.