743 resultados para blended learning methods
Resumo:
The author developed two GUIs for asymptotic Bode plots and identification from such plots aimed at improving the learning of frequency response methods: these were presented at UKACC Control 2012. Student feedback and reflection by the author suggested various improvements to these GUIs, which have now been implemented. This paper reviews the earlier work, describes the improvements, and includes positive feedback from the students on the GUIs and how they have helped their understanding of the methods.
Resumo:
The proposed research aims at consolidating two years of practical experience in developing a classroom experiential learning pedagogic approach for the problem structuring methods (PSMs) of operational research. The results will be prepared as papers to be submitted, respectively, to the Brazilian ISSS-sponsored system theory conference in São Paulo, and to JORS. These two papers follow the submission (in 2004) of one related paper to JORS which is about to be resubmitted following certain revisions. This first paper draws from the PSM and experiential learning literatures in order to introduce a basic foundation upon which a pedagogic framework for experiential learning of PSMs may be built. It forms, in other words, an integral part of my research in this area. By September, the area of pedagogic approaches to PSM learning will have received its first official attention - at the UK OR Society conference. My research and paper production during July-December, therefore, coincide with an important time in this area, enabling me to form part of the small cohort of published researchers creating the foundations upon which future pedagogic research will build. On the institutional level, such pioneering work also raises the national and international profile of FGVEAESP, making it a reference for future researchers in this area.
Resumo:
Research on image processing has shown that combining segmentation methods may lead to a solid approach to extract semantic information from different sort of images. Within this context, the Normalized Cut (NCut) is usually used as a final partitioning tool for graphs modeled in some chosen method. This work explores the Watershed Transform as a modeling tool, using different criteria of the hierarchical Watershed to convert an image into an adjacency graph. The Watershed is combined with an unsupervised distance learning step that redistributes the graph weights and redefines the Similarity matrix, before the final segmentation step using NCut. Adopting the Berkeley Segmentation Data Set and Benchmark as a background, our goal is to compare the results obtained for this method with previous work to validate its performance.
Resumo:
This mixed methods concurrent triangulation design study was predicated upon two models that advocated a connection between teaching presence and perceived learning: the Community of Inquiry Model of Online Learning developed by Garrison, Anderson, and Archer (2000); and the Online Interaction Learning Model by Benbunan-Fich, Hiltz, and Harasim (2005). The objective was to learn how teaching presence impacted students’ perceptions of learning and sense of community in intensive online distance education courses developed and taught by instructors at a regional comprehensive university. In the quantitative phase online surveys collected relevant data from participating students (N = 397) and selected instructional faculty (N = 32) during the second week of a three-week Winter Term. Student information included: demographics such as age, gender, employment status, and distance from campus; perceptions of teaching presence; sense of community; perceived learning; course length; and course type. The students claimed having positive relationships between teaching presence, perceived learning, and sense of community. The instructors showed similar positive relationships with no significant differences when the student and instructor data were compared. The qualitative phase consisted of interviews with 12 instructors who had completed the online survey and replied to all of the open-response questions. The two phases were integrated using a matrix generation, and the analysis allowed for conclusions regarding teaching presence, perceived learning, and sense of community. The findings were equivocal with regard to satisfaction with course length and the relative importance of the teaching presence components. A model was provided depicting relationships between and among teaching presence components, perceived learning, and sense of community in intensive online courses.
Resumo:
Background: As scholars who prepare future school leaders to be innovative instructional leaders for their learning communities, we are on the verge of a curriculum design revolution. The application of brain research findings promotes educational reform efforts to systemically change the way in which children experience school. However, most educators, school leaders, board members, and policy makers are ill prepared to reconsider the implications for assessment, pedagogy, school climate, daily schedules, and use of technology. This qualitative study asked future school leaders to reconsider how school leadership preparedness programs prepared them to become instructional leaders for the 21st century. The findings from this study will enhance the field of school leadership, challenging the current emphasis placed on standardized testing, traditional school calendars, assessments, monocultural instructional methods, and meeting the needs of diverse learning communities. [See PDF for complete abstract]
Resumo:
Accurate quantitative estimation of exposure using retrospective data has been one of the most challenging tasks in the exposure assessment field. To improve these estimates, some models have been developed using published exposure databases with their corresponding exposure determinants. These models are designed to be applied to reported exposure determinants obtained from study subjects or exposure levels assigned by an industrial hygienist, so quantitative exposure estimates can be obtained. ^ In an effort to improve the prediction accuracy and generalizability of these models, and taking into account that the limitations encountered in previous studies might be due to limitations in the applicability of traditional statistical methods and concepts, the use of computer science- derived data analysis methods, predominantly machine learning approaches, were proposed and explored in this study. ^ The goal of this study was to develop a set of models using decision trees/ensemble and neural networks methods to predict occupational outcomes based on literature-derived databases, and compare, using cross-validation and data splitting techniques, the resulting prediction capacity to that of traditional regression models. Two cases were addressed: the categorical case, where the exposure level was measured as an exposure rating following the American Industrial Hygiene Association guidelines and the continuous case, where the result of the exposure is expressed as a concentration value. Previously developed literature-based exposure databases for 1,1,1 trichloroethane, methylene dichloride and, trichloroethylene were used. ^ When compared to regression estimations, results showed better accuracy of decision trees/ensemble techniques for the categorical case while neural networks were better for estimation of continuous exposure values. Overrepresentation of classes and overfitting were the main causes for poor neural network performance and accuracy. Estimations based on literature-based databases using machine learning techniques might provide an advantage when they are applied to other methodologies that combine `expert inputs' with current exposure measurements, like the Bayesian Decision Analysis tool. The use of machine learning techniques to more accurately estimate exposures from literature-based exposure databases might represent the starting point for the independence from the expert judgment.^
Resumo:
Multi-dimensional classification (MDC) is the supervised learning problem where an instance is associated with multiple classes, rather than with a single class, as in traditional classification problems. Since these classes are often strongly correlated, modeling the dependencies between them allows MDC methods to improve their performance – at the expense of an increased computational cost. In this paper we focus on the classifier chains (CC) approach for modeling dependencies, one of the most popular and highest-performing methods for multi-label classification (MLC), a particular case of MDC which involves only binary classes (i.e., labels). The original CC algorithm makes a greedy approximation, and is fast but tends to propagate errors along the chain. Here we present novel Monte Carlo schemes, both for finding a good chain sequence and performing efficient inference. Our algorithms remain tractable for high-dimensional data sets and obtain the best predictive performance across several real data sets.
Resumo:
The development of a web platform is a complex and interdisciplinary task, where people with different roles such as project manager, designer or developer participate. Different usability and User Experience evaluation methods can be used in each stage of the development life cycle, but not all of them have the same influence in the software development and in the final product or system. This article presents the study of the impact of these methods applied in the context of an e-Learning platform development. The results show that the impact has been strong from a developer's perspective. Developer team members considered that usability and User Experience evaluation allowed them mainly to identify design mistakes, improve the platform's usability and understand the end users and their needs in a better way. Interviews with potential users, clickmaps and scrollmaps were rated as the most useful methods. Finally, these methods were considered unanimously very useful in the context of the entire software development, only comparable to SCRUM meetings and overcoming the rest of involved factors.
Resumo:
Online education is a new teaching and learning medium with few current guidelines for faculty, administrators or students. Its rapid growth over the last decade has challenged academic institutions to keep up with the demand, while also providing a quality education. Our understanding of the factors that determine quality and effective online learning experiences that lead to student learning outcomes is still evolving. There is a lack of consensus on the effectiveness of online versus face-to-face education in the current research. The U.S. Department of Education conducted a meta-analysis in 2009 and concluded that student-learning outcomes in online courses were equal to and, often times, better than face-to-face traditional courses. Subsequent research has found contradictory findings, and further inquiry is necessary. The purpose of this embedded mixed methods design research study is to further our understanding of the factors that create quality and successful educational outcomes in an online course. To achieve this, the first phase of this study measured and compared learning outcomes in an online and in class graduate-level legal administration course. The second phase of the study entailed interviews with those students in both the online and face-to-face sections to understand their perspectives on the factors contributing to learning outcomes. Six themes emerged from the qualitative findings: convenience, higher order thinking, discussions, professor engagement, professor and student interaction, and face-to-face interaction. Findings from this study indicate the factors students perceive as contributing to learning outcomes in an online course are consistent among all students and are supported in the existing literature. Higher order thinking, however, emerged as a stronger theme than indicated in the current research, and the face-to-face nature of the traditional classroom may be more an issue of familiarity than a factor contributing to learning outcomes. As education continues to reach new heights and developments in technology advance, the factors found to contribute to student learning outcomes will be refined and enhanced. These developments will continue to transform the ways in which we deliver and receive knowledge in both traditional and online classrooms. While there is a growing body of research on online education, the field’s evolution has unsettled earlier findings and posed new areas to investigate.
Resumo:
Academic libraries increasingly serve a more diverse population of users not only in regard to race and ethnicity, but also to age, gender, language, sexual orientation, and national and cultural backgrounds. This papers reports the findings of the study that explored information behaviour research as a potential source of information about diversity of academic library users and examined the relationship between the use of different research designs and data collection methods and the information gathered about users’ diverse backgrounds. The study found that information behaviour research offers limited insight into the diversity of academic library users. The choice of a research design was not critical but the use of multiple data collection played a role in gathering information about culturally diverse users.
Resumo:
"February 1980."