1000 resultados para Supercritical methanol process
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
2015
Resumo:
Dissertation presented to obtain the Ph.D degree in Chemistry
Resumo:
Dissertação para a obtenção do Grau de Mestre em Engenharia Química e Bioquímica
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Informática
Resumo:
Dissertação para obtenção do Grau de Doutor em Engenharia Química e Bioquímica
Resumo:
The EM3E Master is an Education Programme supported by the European Commission, the European Membrane Society (EMS), the European Membrane House (EMH), and a large international network of industrial companies, research centers and universities
Resumo:
The work presented in this thesis was developed in collaboration with a Portuguese company, BeyonDevices, devoted to pharmaceutical packaging, medical technology and device industry. Specifically, the composition impact and surface modification of two polymeric medical devices from the company were studied: inhalers and vaginal applicators. The polyethylene-based vaginal applicator was modified using supercritical fluid technology to acquire self-cleaning properties and prevent the transport of bacteria and yeasts to vaginal flora. For that, in-situ polymerization of 2-substituted oxazolines was performed within the polyethylene matrix using supercritical carbon dioxide. The cationic ring-opening polymerization process was followed by end-capping with N,N-dimethyldodecylamine. Furthermore, for the same propose, the polyethylene matrix was impregnated with lavender oil in supercritical medium. The obtained materials were characterized physical and morphologically and the antimicrobial activity against bacteria and yeasts was accessed. Materials modified using 2-substituted oxazolines showed an effective killing ability for all the tested microorganisms, while the materials modified with lavender oil did not show antimicrobial activity. Only materials modified with oligo(2-ethyl-2-oxazoline) maintain the activity during the long term stability. Furthermore, the cytotoxicity of the materials was tested, confirming their biocompatibilty. Regarding the inhaler, its surface was modified in order to improve powder flowability and consequently, to reduce powder retention in the inhaler´s nozzle. New dry powder inhalers (DPIs), with different needle’s diameters, were evaluated in terms of internal resistance and uniformity of the emitted dose. It was observed that they present a mean resistance of 0.06 cmH2O0.5/(L/min) and the maximum emitted dose obtained was 68.9% for the inhaler with higher needle´s diameter (2 mm). Thus, this inhaler was used as a test and modified by the coating with a commonly-used force control agent, magnesium stearate, dried with supercritical carbon dioxide (scCO2) and the uniformity of delivered dose tests were repeated. The modified inhaler showed an increase in emitted dose from 68.9% to 71.3% for lactose and from 30.0% to 33.7% for Foradil.
Resumo:
The use of natural pigments instead of synthetic colourants is receiving growing interest in the food industry. In this field, cactus pears (Opuntia spp.) have been identified to be a promising betalainic crops covering a wide coloured spectrum. The aim of this work was to develop adequate clean and mild methodologies for the isolation and encapsulation of betacyanins, from cactus pear fruits (Opuntia spp.). Firstly, two different emerging technologies, namely PLE (Pressurized Liquid Extraction) and HPCDAE (High Pressure Carbon Dioxide-Assisted Extraction), were exploited to isolation of betacyanins form cactus pear fruits. Different process conditions were tested for the maximum recovery of betacyanins. Results showed that highest extraction yields were achieved for HPCDAE and mass ratio of pressurized carbon dioxide vs. acidified water was the parameter that most affected the betacyanins extraction. At optimum conditions of HPCDAE, Opuntia spp. extract presented a total betacyanin content of 211 ± 10 mg/100 g whereas extracts obtained using conventional extraction, PLE in static and in dynamic mode presented a total betacyanin content of 85 ± 3, 191 ± 2 and 153 ± 5 mg/100 g, respectively. HPCDAE has proven to be a successful technology to extract betacyanins from Opuntia spp. fruits. Afterward, Supercritical Fluid Technology was exploited to develop lipidic particles of betalain-rich extract. A betacyanin-rich conventional extract was encapsulated by PGSS® (Particles from Gas Saturated Solutions) technique. Different process conditions were tested in order to model the encapsulation of betacyanins. The pressure had a negative effect on betacyanin encapsulation. Lower pressures leads to an increase in the betacyanin encapsulation. This effect was more pronounced at higher temperatures and lower equilibrium time. At these conditions, Opuntia spp. particles presented 64.4 ± 4.5 mg/100 g and high antioxidant capacity. When compared with the Opuntia spp. dried extract, lipidic particles contributed to a better homogenization of the pink colour after incorporation in ice cream.
Resumo:
Over the last decade, human embryonic stem cells (hESCs) have garnered a lot of attention owing to their inherent self-renewal ability and pluripotency. These characteristics have opened opportunities for potential stem cell-based regenerative medicines, for development of drug discovery platforms and as unique in vitro models for the study of early human development.(...)