903 resultados para Sensory analisys
Resumo:
Nerve development, which includes axon outgrowth and guidance, is regulated by many protein families, including receptor protein tyrosine phosphatases (RPTP's).Protein tyrosine phosphatase receptor type 0 (PTPRO) is a type III RPTP that is important for axon growth and guidance, as observed in chicks and flies. In order to examine the effects ofPTPRO on mammalian development, standard behavioral tests were used to compare mice lacking the gene for PTPRO (ROKO mice) to wild-type (WT) mice. The ROKO mice showed a significant delay in reacting to a thermal noxious stimulus, hotplate analgesia, when compared to the WT mice suggesting deficient nociceptive function. In a rotarod test for proprioceptive function the ROKO mice exhibited a significant decrease in the amount of time spent on the rotating rod than did the WT mice. Additional proprioception tests were performed including the climb, step reflex, beam, and mesh walk tests. In the climb and step (place) test, the ROKO group had a significantly lower accuracy in performing the tests than did the WT mice. Thus, mice lacking the PTPRO gene showed behavioral deficiencies that reflect impairment in sensory function, specifically for nociception and proprioception.
Resumo:
Fixed-step-size (FSS) and Bayesian staircases are widely used methods to estimate sensory thresholds in 2AFC tasks, although a direct comparison of both types of procedure under identical conditions has not previously been reported. A simulation study and an empirical test were conducted to compare the performance of optimized Bayesian staircases with that of four optimized variants of FSS staircase differing as to up-down rule. The ultimate goal was to determine whether FSS or Bayesian staircases are the best choice in experimental psychophysics. The comparison considered the properties of the estimates (i.e. bias and standard errors) in relation to their cost (i.e. the number of trials to completion). The simulation study showed that mean estimates of Bayesian and FSS staircases are dependable when sufficient trials are given and that, in both cases, the standard deviation (SD) of the estimates decreases with number of trials, although the SD of Bayesian estimates is always lower than that of FSS estimates (and thus, Bayesian staircases are more efficient). The empirical test did not support these conclusions, as (1) neither procedure rendered estimates converging on some value, (2) standard deviations did not follow the expected pattern of decrease with number of trials, and (3) both procedures appeared to be equally efficient. Potential factors explaining the discrepancies between simulation and empirical results are commented upon and, all things considered, a sensible recommendation is for psychophysicists to run no fewer than 18 and no more than 30 reversals of an FSS staircase implementing the 1-up/3-down rule.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Olfactory sensory neurons (OSNs), which detect a myriad of odorants, are known to express one allele of one olfactory receptor (OR) gene (Olfr) from the largest gene family in the mammalian genome. The OSNs expressing the same OR project their axons to the main olfactory bulb where they converge to form glomeruli. This “One neuron-one receptor rule” makes the olfactory epithelium (OE), which consists of a vast number of OSNs expressing unique ORs, one of the most heterogeneous cell populations. However, the mechanism of how the single OR allele is chosen remains unclear along with the question of whether one OSN only expresses a single OR gene, a hypothesis that has not been rigorously verified while we performed the experiments. Moreover, failure of axonal targeting to single glomerulus was observed in MeCP2 deficient OSNs where delayed development was proposed as an explanation for the phenotype. How Mecp2 mutation caused this aberrant targeting is not entirely understood.
In this dissertation, we explored the transcriptomes of single and mature OSNs by single-cell RNA-Seq to reveal their heterogeneity and further studied the OR gene expression from these isolated OSNs. The singularity of sequenced OSNs was ensured by the observation of monoallelic expression of X-linked genes from the hybrid samples from crosses between mice of different strains where strain-specific polymorphisms could be used to track the allelic origins of SNP-containing reads. The clustering of expression profiles from triplicates that originated from the same cell assured that the transcriptomic identities of OSNs were maintained through the experimental process. The average gene expression profiles of sequenced OSNs correlated well to the conventional transcriptome data of FACS-sorted Omp-positive cells, and the top-ranked expression of OR was conceded in the single-OSN transcriptomes. While exploring cellular diversity, in addition to OR genes, we revealed nearly 200 differentially expressed genes among the sequenced OSNs in this study. Among the 36 sequenced OSNs, eight cells (22.2%) showed multiple OR gene expression and the presences of additional ORs were not restricted to the neighbor loci that shared the transcriptional effect of the primary OR expression, suggesting that the “One neuron-one receptor rule” might not be strictly true at the transcription level. All of the inferable ORs, including additional co-expressed ORs, were shown to be monoallelic. Our sequencing of 21 Mecp2308 mutant OSNs, of which 62% expressed more than one OR genes, and the expression levels of the additional ORs were significantly higher than those in the wild-type, suggested that MeCP2 plays a role in the regulation of singular OR gene expression. Dual label in situ hybridization along with the sequence data revealed that dorsal and ventral ORs were co-expressed in the same Mecp2 mutant OSN, further implying that MeCP2 might be involved in regulation of OR territories in the OE. Our results suggested a new role of MeCP2 in OR gene choice and ratified that this multiple-OR expression caused by Mecp2 mutation did not accompany delayed OSN development that has been observed in the previous studies on the Mecp2 mutants.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Preterm infants are exposed to high levels of modified early sensory experience in the Neonatal Intensive Care Unit (NICU). Reports that preterm infants show deficits in contingency detection and learning when compared to full-term infants (Gekoski, Fagen, & Pearlman, 1984; Haley, Weinberg, & Grunau, 2006) suggest that their exposure to atypical amounts or types of sensory stimulation might contribute to deficits in these critical skills. Experimental modifications of sensory experience are severely limited with human fetuses and preterm infants, and previous studies with precocial bird embryos that develop in ovo have proven useful to assess the effects of modified perinatal sensory experience on subsequent perceptual and cognitive development. In the current study, I assessed whether increasing amounts of prenatal auditory or visual stimulation can interfere with quail neonates’ contingency detection and contingency learning in the days following hatching. Results revealed that augmented prenatal visual stimulation prior to hatching does not disrupt the ability of bobwhite chicks to recognize and prefer information learned in a contingent fashion, whereas augmented prenatal auditory stimulation disrupted the ability of chicks to benefit from contingently presented information. These results suggest that specific types of augmented prenatal stimulation that embryos receive during late prenatal period can impair the ability to learn and remember contingently presented information. These results provide testable developmental hypotheses, with the goal of improving the developmental care and management of preterm neonates in the NICU setting.
Resumo:
Understanding how seafood will be influenced by coming environmental changes such as ocean acidification is a research priority. One major gap in knowledge relates to the fact that many experiments are not considering relevant end points related directly to production (e.g., size, survival) and product quality (e.g., sensory quality) that can have important repercussions for consumers and the seafood market. The aim of this experiment was to compare the survival and sensory quality of the adult northern shrimp (Pandalus borealis) exposed for 3 wk to a temperature at the extreme of its thermal tolerance (11°C) and 2 pH treatments: pH 8.0 (the current average pH at the sampling site) and pH 7.5 (which is out of the current natural variability and relevant to near-future ocean acidification). Results show that decreased pH increased mortality significantly, by 63%. Sensory quality was assessed through semiqualitative scoring by a panel of 30 local connoisseurs. They were asked to rate 4 shrimp (2 from each pH treatment) for 3 parameters: appearance, texture and taste. Decreased pH reduced the score significantly for appearance and taste, but not texture. As a consequence, shrimp maintained in pH8.0 had a 3.4 times increased probability to be scored as the best shrimp on the plate, whereas shrimp from the pH 7.5 treatment had a 2.6 times more chance to be scored as the least desirable shrimp on the plate. These results help to prove the concept that ocean acidification can modulate sensory quality of the northern shrimp P. borealis. More research is now needed to evaluate impacts on other seafood species, socioeconomic consequences, and potential options.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-08
Resumo: