1000 resultados para Robotica evolutiva, algoritmi genetici, reti neurali
Resumo:
Il presente elaborato ha studiato i sistemi di assistenza avanzata al conducente (ADAS), focalizzandosi sull’Adaptive Cruise Control (ACC). Si sono studiati diversi aspetti comportamentali dei conducenti in funzione del sistema ACC come il visual behaviour dei conducenti, i dati cinematici del veicolo (driving behaviour) e il tempo di percezione-reazione in situazioni critiche. Si è descritta la sperimentazione svolta in sito e le strumentazioni innovative, tra le quali il Mobile eye tracker, utilizzate per la raccolta dati. Per eseguire l’elaborazione dei dati sono state applicate tecniche di machine learning, mediante l’applicazione di una rete neurale artificiale realizzata appositamente per questo studio, risultando uno dei primi nel settore ad utilizzare tale metodologia. Si è descritto il codice della rete e valutate le prestazioni della stessa. Infine sono state eseguite analisi sul comportamento dei conducenti in funzione dello stato (on/off) del sistema.
Resumo:
Con questa ricerca si intende costruire una semiotica specifica che sia in grado di fare luce sui processi di apprendimento della lettoscrittura durante l’età evolutiva. È un campo di ricerca a cui hanno contribuito numerose discipline: la psicologia e le neuroscienze trattano la lettoscrittura come uno stato cognitivo a cui l’essere umano accede nel corso dello sviluppo individuale, mentre l’archeologia cognitiva e la linguistica considerano lo stesso fenomeno dal punto di vista della filogenesi culturale. Queste stesse discipline possono essere distinte in due categorie a seconda dell’adozione di una prospettiva internalista, in cui lettura e scrittura sono rappresentate come attività compiute dal cervello e dai neuroni, o di una prospettiva distribuita, in cui si tratta di studiare l’evoluzione e la presa in carico delle forme materiali della lingua scritta. Gli strumenti di una semiotica interpretativa e cognitiva consentono di mediare e tradurre tra queste prospettive differenti e rendere ragione del modo in cui l’apprendimento di una pratica culturale socialmente regolata e costruita a partire da forme materiali disponibili, produce profonde modificazioni a livello neurofisiologico, nei vincoli di un’architettura cerebrale che - per quanto plastica - pone divieti e passaggi obbligati. Questa ricerca propone un ruolo centrale della produzione segnica e dell’inferenza abduttiva nei processi di apprendimento, nel processo di acquisizione delle competenze fondamentali dell’emergent literacy (la scoperta del fonema e la phonemic awareness) e, conseguentemente, nei processi di riciclaggio ed exaptation che si danno a livello neurofisiologico.
Resumo:
Nonostante lo scetticismo di molti studiosi circa la possibilità di prevedere l'andamento della borsa valori, esistono svariate teorie ipotizzanti la possibilità di utilizzare le informazioni conosciute per predirne i movimenti futuri. L’avvento dell’intelligenza artificiale nella seconda parte dello scorso secolo ha permesso di ottenere risultati rivoluzionari in svariati ambiti, tanto che oggi tale disciplina trova ampio impiego nella nostra vita quotidiana in molteplici forme. In particolare, grazie al machine learning, è stato possibile sviluppare sistemi intelligenti che apprendono grazie ai dati, riuscendo a modellare problemi complessi. Visto il successo di questi sistemi, essi sono stati applicati anche all’arduo compito di predire la borsa valori, dapprima utilizzando i dati storici finanziari della borsa come fonte di conoscenza, e poi, con la messa a punto di tecniche di elaborazione del linguaggio naturale umano (NLP), anche utilizzando dati in linguaggio naturale, come il testo di notizie finanziarie o l’opinione degli investitori. Questo elaborato ha l’obiettivo di fornire una panoramica sull’utilizzo delle tecniche di machine learning nel campo della predizione del mercato azionario, partendo dalle tecniche più elementari per arrivare ai complessi modelli neurali che oggi rappresentano lo stato dell’arte. Vengono inoltre formalizzati il funzionamento e le tecniche che si utilizzano per addestrare e valutare i modelli di machine learning, per poi effettuare un esperimento in cui a partire da dati finanziari e soprattutto testuali si tenterà di predire correttamente la variazione del valore dell’indice di borsa S&P 500 utilizzando un language model basato su una rete neurale.
Resumo:
Questo lavoro di tesi ha visto come obiettivo finale quello di realizzare una se- rie di attacchi, alcuni di questi totalmente originali, ai protocolli della famiglia Time-Sensitive Networking (TSN) attraverso lo sviluppo di un’infrastruttura virtualizzata. L’infrastruttura è stata costruita e progettata utilizzando mac- chine virtuali con Quick EMUlator (QEMU) come strato di virtualizzazione ed accelerate attraverso Kernel-based Virtual Machine (KVM). Il progetto è stato concepito come Infrastrucutre as Code (IaC), attraverso l’ausilio di Ansible e alcuni script shell utilizzati come collante per le varie parti del progetto.
Resumo:
Nella tomografia computerizzata subentrano due fonti principali di rumore nel processo di generazione dell'immagine. Il l rumore legato al disturbo generato dall'elettronica si può modellare con un rumore di Gauss, mentre il rumore dovuto all'interazione dei fotoni con il corpo in scansione può essere modellato con un rumore di Poisson. Partendo da un modello per la rimozione del rumore misto di Poisson-Gauss (modello Infimal), viene applicato l'algoritmo del gradiente proiettato scalato (SGP) con Infimal su vari rumori misti per analizzarne l'efficacia.
Resumo:
L’obbiettivo di questo elaborato è descrivere l'implementazione, attraverso l’uso del programma di calcolo Matlab, di un metodo per ottenere una configurazione di un velivolo dell’aviazione generale che sia rispettosa delle specifiche di progetto e presenti un costo orario minimo. Il metodo utilizzato per progettare l’aeromobile preso come caso di studio è basato sui concetti della progettazione robusta. Con questo metodo di progettazione si cerca di rendere l’aereo il più insensibile possibile alle modifiche di alcuni dei parametri di progetto che possono variare in modo casuale; in particolare ci si è concentrati sul costo orario di una missione, andandone a calcolare la media e la sua deviazione standard. Considerando infine il rapporto segnale-rumore introdotto da Taguchi per la progettazione robusta, viene implementato un metodo di ottimizzazione basato su un algoritmo Particle Swarm Optimization (PSO), attraverso il quale si ottengono i valori più idonei dei parametri di progetto necessari per la realizzazione del futuro velivolo. In dettaglio, i parametri fissati in seguito all’applicazione dell’ottimizzatore sono l’allungamento alare, il carico alare e il rapporto potenza massima motori-peso. A conclusione del lavoro svolto, si può dire che l’ottimizzazione robusta può essere utile in tutti i casi in cui alcuni parametri di progetto non sono definiti in modo univoco, ma possono variare in un modo non prevedibile all’inizio della sviluppo del prodotto.
Resumo:
Il seguente elaborato affronta l'implementazione di un algoritmo che affronta un problema di controllo di processo in ambito industriale utilizzando algoritmi di object detection. Infatti, il progetto concordato con il professore Di Stefano si è svolto in collaborazione con l’azienda Pirelli, nell’ambito della produzione di pneumatici. Lo scopo dell'algoritmo implementato è di verificare il preciso orientamento di elementi grafici della copertura, utilizzati dalle case automobilistiche per equipaggiare correttamente le vetture. In particolare, si devono individuare delle scritte sul battistrada della copertura e identificarne la posizione rispetto ad altri elementi fissati su di essa. La tesi affronta questo task in due parti distinte: la prima consiste nel training di algoritmi di deep learning per il riconoscimento degli elementi grafici e del battistrada, la seconda è un decisore che opera a valle del primo sistema utilizzando gli output delle reti allenate.
Resumo:
Nell’ambito della Stereo Vision, settore della Computer Vision, partendo da coppie di immagini RGB, si cerca di ricostruire la profondità della scena. La maggior parte degli algoritmi utilizzati per questo compito ipotizzano che tutte le superfici presenti nella scena siano lambertiane. Quando sono presenti superfici non lambertiane (riflettenti o trasparenti), gli algoritmi stereo esistenti sbagliano la predizione della profondità. Per risolvere questo problema, durante l’esperienza di tirocinio, si è realizzato un dataset contenente oggetti trasparenti e riflettenti che sono la base per l’allenamento della rete. Agli oggetti presenti nelle scene sono associate annotazioni 3D usate per allenare la rete. Invece, nel seguente lavoro di tesi, utilizzando l’algoritmo RAFT-Stereo [1], rete allo stato dell’arte per la stereo vision, si analizza come la rete modifica le sue prestazioni (predizione della disparità) se al suo interno viene inserito un modulo per la segmentazione semantica degli oggetti. Si introduce questo layer aggiuntivo perché, trovare la corrispondenza tra due punti appartenenti a superfici lambertiane, risulta essere molto complesso per una normale rete. Si vuole utilizzare l’informazione semantica per riconoscere questi tipi di superfici e così migliorarne la disparità. È stata scelta questa architettura neurale in quanto, durante l’esperienza di tirocinio riguardante la creazione del dataset Booster [2], è risultata la migliore su questo dataset. L’obiettivo ultimo di questo lavoro è vedere se il riconoscimento di superfici non lambertiane, da parte del modulo semantico, influenza la predizione della disparità migliorandola. Nell’ambito della stereo vision, gli elementi riflettenti e trasparenti risultano estremamente complessi da analizzare, ma restano tuttora oggetto di studio dati gli svariati settori di applicazione come la guida autonoma e la robotica.
Resumo:
Lo sviluppo della robotica collaborativa, in particolare nelle applicazioni di processi industriali in cui sono richieste la flessibilità decisionale di un utilizzatore umano e le prestazioni di forza e precisione garantite dal robot, pone continue sfide per il miglioramento della capacità di progettare e controllare al meglio questi apparati, rendendoli sempre più accessibili in termini economici e di fruibilità. Questo cambio di paradigma rispetto ai tradizionali robot industriali, verso la condivisone attiva degli ambienti di lavoro tra uomo e macchina, ha accelerato lo sviluppo di nuove soluzioni per rendere possibile l’impiego di robot che possano interagire con un ambiente in continua mutazione, in piena sicurezza. Una possibile soluzione, ancora non diffusa commercialmente, ma largamente presente in letteratura, è rappresentata dagli attuatori elastici. Tra gli attuatori elastici, l’architettura che ad oggi ha destato maggior interesse è quella seriale, in cui l’elemento cedevole viene posto tra l’uscita del riduttore ed il carico. La bibliografia mostra come alcuni limiti della architettura seriale possano essere superati a parità di proprietà dinamiche. La soluzione più promettente è l’architettura differenziale, che si caratterizza per l’utilizzo di riduttori ad un ingresso e due uscite. I vantaggi mostrati dai primi risultati scientifici evidenziano l’ottenimento di modelli dinamici ideali paragonabili alla più nota architettura seriale, superandola in compattezza ed in particolare semplificando l’installazione dei sensori necessari al controllo. In questa tesi viene effettuata un’analisi dinamica preliminare ed uno studio dell’attitudine del dispositivo ad essere utilizzato in contesto collaborativo. Una volta terminata questa fase, si presenta il design e la progettazione di un prototipo, con particolare enfasi sulla scelta di componenti commerciali ed il loro dimensionamento, oltre alla definizione della architettura costruttiva complessiva.
Resumo:
Il fenomeno noto come Internet of Things costituisce oggi il motore principale dell'espansione della rete Internet globale, essendo artefice del collegamento di miliardi di nuovi dispositivi. A causa delle limitate capacità energetiche e di elaborazione di questi dispositivi è necessario riprogettare molti dei protocolli Internet standard. Un esempio lampante è costituito dalla definizione del Constrained Application Protocol (CoAP), protocollo di comunicazione client-server pensato per sostituire HTTP in reti IoT. Per consentire la compatibilità tra reti IoT e rete Internet sono state definite delle linee guida per la mappatura di messaggi CoAP in messaggi HTTP e viceversa, consentendo così l'implementazione di proxies in grado di connettere una rete IoT ad Internet. Tuttavia, questa mappatura è circoscritta ai soli campi e messaggi che permettono di implementare un'architettura REST, rendendo dunque impossibile l'uso di protocolli di livello applicazione basati su HTTP.La soluzione proposta consiste nella definizione di un protocollo di compressione adattiva dei messaggi HTTP, in modo che soluzioni valide fuori dagli scenari IoT, come ad esempio scambio di messaggi generici, possano essere implementate anche in reti IoT. I risultati ottenuti mostrano inoltre che nello scenario di riferimento la compressione adattiva di messaggi HTTP raggiunge prestazioni inferiori rispetto ad altri algoritmi di compressione di intestazioni (in particolare HPACK), ma più che valide perchè le uniche applicabili attualmente in scenari IoT.
Resumo:
Negli ultimi anni vi è stato un aumento della sensibilità in merito alle tematiche ambientali e questo ha riguardato anche il settore della mobilità, spingendo sempre più verso l’elettrificazione dei trasporti. Una delle possibilità per elettrificare i trasporti sono le reti filoviarie. Di quelle già esistenti, però, la maggior parte è stata realizzata nel secolo scorso. Inoltre, non vengono effettuate misure per valutare quale sia lo stato del carico sulla rete. In questa tesi si è valutata la fattibilità di realizzazione di un sensore non intrusivo per la misura delle correnti sulle filovie di reti esistenti, al fine di poter ottenere i dati relativi ai flussi di potenza e permettere quindi, in futuro, una migliore gestione della rete. Per effettuare la misura di corrente in modo non invasivo si è pensato di utilizzare un sensore di campo magnetico stazionario. Per valutare l’intensità del campo magnetico, al fine di scegliere il sensore che si confacesse alle caratteristiche dell’applicazione, si è proceduto a sviluppare diversi modelli per rappresentare i conduttori della filovia. Da queste simulazioni è stato inoltre possibile valutare quale fosse la posizione più idonea al collocamento del sensore. Per l’alimentazione del sensore, si sono valutate più possibilità che permettessero di non ricorrere ad un cablaggio ausiliario, tra cui l’utilizzo di un pannello fotovoltaico eventualmente accoppiato ad una batteria. Per la trasmissione dei dati, sono stati valutati più protocolli e dispositivi di comunicazione per trovare quello che meglio combinasse le necessità di trasmissione su distanze medio-lunghe e la necessità di minimizzare i consumi energetici. Infine, sono state effettuate prove sperimentali per validare l'affidabilità delle misure, ovvero verificare che fosse realmente possibile stimare il valore delle correnti nei conduttori della filovia partendo da una misura di campo magnetico, e se i consumi energetici stimati fossero in linea con quelli reali.
Resumo:
L'esperimento ATLAS, come gli altri esperimenti che operano al Large Hadron Collider, produce Petabytes di dati ogni anno, che devono poi essere archiviati ed elaborati. Inoltre gli esperimenti si sono proposti di rendere accessibili questi dati in tutto il mondo. In risposta a questi bisogni è stato progettato il Worldwide LHC Computing Grid che combina la potenza di calcolo e le capacità di archiviazione di più di 170 siti sparsi in tutto il mondo. Nella maggior parte dei siti del WLCG sono state sviluppate tecnologie per la gestione dello storage, che si occupano anche della gestione delle richieste da parte degli utenti e del trasferimento dei dati. Questi sistemi registrano le proprie attività in logfiles, ricchi di informazioni utili agli operatori per individuare un problema in caso di malfunzionamento del sistema. In previsione di un maggiore flusso di dati nei prossimi anni si sta lavorando per rendere questi siti ancora più affidabili e uno dei possibili modi per farlo è lo sviluppo di un sistema in grado di analizzare i file di log autonomamente e individuare le anomalie che preannunciano un malfunzionamento. Per arrivare a realizzare questo sistema si deve prima individuare il metodo più adatto per l'analisi dei file di log. In questa tesi viene studiato un approccio al problema che utilizza l'intelligenza artificiale per analizzare i logfiles, più nello specifico viene studiato l'approccio che utilizza dell'algoritmo di clustering K-means.
Resumo:
L’applicazione degli algoritmi di Intelligenza Artificiale (AI) al settore dell’imaging medico potrebbe apportare numerosi miglioramenti alla qualità delle cure erogate ai pazienti. Tuttavia, per poterla mettere a frutto si devono ancora superare alcuni limiti legati alla necessità di grandi quantità di immagini acquisite su pazienti reali, utili nell’addestramento degli stessi algoritmi. Il principale limite è costituito dalle norme che tutelano la privacy di dati sensibili, tra cui sono incluse le immagini mediche. La generazione di grandi dataset di immagini sintetiche, ottenute con algoritmi di Deep Learning (DL), sembra essere la soluzione a questi problemi.
Resumo:
L'obiettivo principale di molti problemi industriali è tipicamente massimizzare i profitti o minimizzare costi o tempi di produzione. Questi problemi sono detti "di ottimizzazione" poiché bisogna ottimizzare determinati processi o attività attraverso decisioni che portino alla soluzione ottima del problema. Il giusto utilizzo di modelli matematici può condurre, tramite l'utilizzo di algoritmi esatti, alla soluzione ottima di un problema di questo tipo. Queste tecniche sono spesso basate su l'enumerazione completa di tutte le possibili soluzioni e ciò potrebbe pertanto richiedere una quantità di calcoli talmente elevata da renderle di fatto inutilizzabili. Per risolvere problemi di grandi dimensioni vengono quindi utilizzati i cosiddetti algoritmi euristici, i quali non assicurano di trovare la soluzione ottima del problema, ma promettono di trovarne una di buona qualità. In questa tesi vengono analizzati, sviluppati e confrontati entrambi gli approcci, attraverso l'analisi di un problema reale che richiede la pianificazione delle attività di un satellite.
Resumo:
Diversi elementi possono influenzare il comportamento dei conducenti mentre svolgono attività di guida. Dalle distrazioni visive a quelle cognitive, le emozioni (che potrebbero risultare da dati biometrici, come temperatura, battito cardiaco, pressione, ecc.) e le condizioni di altri conducenti, che possono svolgere un ruolo significativo, fungendo da fattore che può aumentare il tempo di risposta dei guidatori. Mantenere sotto controllo questi parametri potrebbe essere fondamentale per evitare situazioni pericolose, per decidere ed eseguire azioni che potrebbero influenzare il verificarsi di incidenti stradali. Questo volume analizza l'indice "Fitness-to-Drive" e mira a valutare come gli effetti dell'eccitazione possono influenzare lo stato dei conducenti. La tesi presenta alcune valutazioni sperimentali condotte su un simulatore di guida, discutendo i risultati ottenuti.