968 resultados para Plant pathogen defense
Resumo:
Human land use tends to decrease the diversity of native plant species and facilitate the invasion and establishment of exotic ones. Such changes in land use and plant community composition usually have negative impacts on the assemblages of native herbivorous insects. Highly specialized herbivores are expected to be especially sensitive to land use intensification and the presence of exotic plant species because they are neither capable of consuming alternative plant species of the native flora nor exotic plant species. Therefore, higher levels of land use intensity might reduce the proportion of highly specialized herbivores, which ultimately would lead to changes in the specialization of interactions in plant-herbivore networks. This study investigates the community-wide effects of land use intensity on the degree of specialization of 72 plant-herbivore networks, including effects mediated by the increase in the proportion of exotic plant species. Contrary to our expectation, the net effect of land use intensity on network specialization was positive. However, this positive effect of land use intensity was partially canceled by an opposite effect of the proportion of exotic plant species on network specialization. When we analyzed networks composed exclusively of endophagous herbivores separately from those composed exclusively of exophagous herbivores, we found that only endophages showed a consistent change in network specialization at higher land use levels. Altogether, these results indicate that land use intensity is an important ecological driver of network specialization, by way of reducing the local host range of herbivore guilds with highly specialized feeding habits. However, because the effect of land use intensity is offset by an opposite effect owing to the proportion of exotic host species, the net effect of land use in a given herbivore assemblage will likely depend on the extent of the replacement of native host species with exotic ones.
Resumo:
Matrix-assisted laser desorption/ionization time-of flight mass spectrometry (MALDI-TOF MS) has been widely used for the identification and classification of microorganisms based on their proteomic fingerprints. However, the use of MALDI-TOF MS in plant research has been very limited. In the present study, a first protocol is proposed for metabolic fingerprinting by MALDI-TOF MS using three different MALDI matrices with subsequent multivariate data analysis by in-house algorithms implemented in the R environment for the taxonomic classification of plants from different genera, families and orders. By merging the data acquired with different matrices, different ionization modes and using careful algorithms and parameter selection, we demonstrate that a close taxonomic classification can be achieved based on plant metabolic fingerprints, with 92% similarity to the taxonomic classifications found in literature. The present work therefore highlights the great potential of applying MALDI-TOF MS for the taxonomic classification of plants and, furthermore, provides a preliminary foundation for future research.
Resumo:
Oropouche virus (OROV) is a member of the Orthobunyavirus genus in the Bunyaviridae family and a prominent cause of insect-transmitted viral disease in Central and South America. Despite its clinical relevance, little is known about OROV pathogenesis. To define the host defense pathways that control OROV infection and disease, we evaluated OROV pathogenesis and immune responses in primary cells and mice that were deficient in the RIG-I-like receptor signaling pathway (MDA5, RIG-I, or MAVS), downstream regulatory transcription factors (IRF-3 or IRF-7), IFN-β, or the receptor for type I IFN signaling (IFNAR). OROV replicated to higher levels in primary fibroblasts and dendritic cells lacking MAVS signaling, the transcription factors IRF-3 and IRF-7, or IFNAR. In mice, deletion of IFNAR, MAVS, or IRF-3 and IRF-7 resulted in uncontrolled OROV replication, hypercytokinemia, extensive liver damage, and death whereas wild-type (WT) congenic animals failed to develop disease. Unexpectedly, mice with a selective deletion of IFNAR on myeloid cells (CD11c Cre(+) Ifnar(f/f) or LysM Cre(+) Ifnar(f/f)) did not sustain enhanced disease with OROV or La Crosse virus, a closely related encephalitic orthobunyavirus. In bone marrow chimera studies, recipient irradiated Ifnar(-/-) mice reconstituted with WT hematopoietic cells sustained high levels of OROV replication and liver damage, whereas WT mice reconstituted with Ifnar(-/-) bone marrow were resistant to disease. Collectively, these results establish a dominant protective role for MAVS, IRF-3 and IRF-7, and IFNAR in restricting OROV virus infection and tissue injury, and suggest that IFN signaling in non-myeloid cells contributes to the host defense against orthobunyaviruses. Oropouche virus (OROV) is an emerging arthropod-transmitted orthobunyavirus that causes episodic outbreaks of a debilitating febrile illness in humans in countries of South and Central America. The continued expansion of the range and number of its arthropod vectors increases the likelihood that OROV will spread into new regions. At present, the pathogenesis of OROV in humans or other vertebrate animals remains poorly understood. To define cellular mechanisms of control of OROV infection, we performed infection studies in a series of primary cells and mice that were deficient in key innate immune genes involved in pathogen recognition and control. Our results establish that a MAVS-dependent type I IFN signaling pathway has a dominant role in restricting OROV infection and pathogenesis in vivo.
Resumo:
Seasonally dry tropical plant formations (SDTF) are likely to exhibit phylogenetic clustering owing to niche conservatism driven by a strong environmental filter (water stress), but heterogeneous edaphic environments and life histories may result in heterogeneity in degree of phylogenetic clustering. We investigated phylogenetic patterns across ecological gradients related to water availability (edaphic environment and climate) in the Caatinga, a SDTF in Brazil. Caatinga is characterized by semiarid climate and three distinct edaphic environments - sedimentary, crystalline, and inselberg -representing a decreasing gradient in soil water availability. We used two measures of phylogenetic diversity: Net Relatedness Index based on the entire phylogeny among species present in a site, reflecting long-term diversification; and Nearest Taxon Index based on the tips of the phylogeny, reflecting more recent diversification. We also evaluated woody species in contrast to herbaceous species. The main climatic variable influencing phylogenetic pattern was precipitation in the driest quarter, particularly for herbaceous species, suggesting that environmental filtering related to minimal periods of precipitation is an important driver of Caatinga biodiversity, as one might expect for a SDTF. Woody species tended to show phylogenetic clustering whereas herbaceous species tended towards phylogenetic overdispersion. We also found phylogenetic clustering in two edaphic environments (sedimentary and crystalline) in contrast to phylogenetic overdispersion in the third (inselberg). We conclude that while niche conservatism is evident in phylogenetic clustering in the Caatinga, this is not a universal pattern likely due to heterogeneity in the degree of realized environmental filtering across edaphic environments. Thus, SDTF, in spite of a strong shared environmental filter, are potentially heterogeneous in phylogenetic structuring. Our results support the need for scientifically informed conservation strategies in the Caatinga and other SDTF regions that have not previously been prioritized for conservation in order to take into account this heterogeneity.
Resumo:
The present review addresses certain important aspects regarding nanoparticles and the environment, with an emphasis on plant science. The production and characterization of nanoparticles is the focus of this review, providing an idea of the range and the consolidation of these aspects in the literature, with modifications on the routes of synthesis and the application of the analytical techniques for characterization of the nanoparticles (NPs). Additionally, aspects related to the interaction between the NPs and plants, their toxicities, and the phytoremediation process, among others, are also discussed. Future trends are also presented, supplying evidence for certain possibilities regarding new research involving nanoparticles and plants.
Mineral Nutrition Of Campos Rupestres Plant Species On Contrasting Nutrient-impoverished Soil Types.
Resumo:
In Brazil, the campos rupestres occur over the Brazilian shield, and are characterized by acidic nutrient-impoverished soils, which are particularly low in phosphorus (P). Despite recognition of the campos rupestres as a global biodiversity hotspot, little is known about the diversity of P-acquisition strategies and other aspects of plant mineral nutrition in this region. To explore nutrient-acquisition strategies and assess aspects of plant P nutrition, we measured leaf P and nitrogen (N) concentrations, characterized root morphology and determined the percentage arbuscular mycorrhizal (AM) colonization of 50 dominant species in six communities, representing a gradient of soil P availability. Leaf manganese (Mn) concentration was measured as a proxy for carboxylate-releasing strategies. Communities on the most P-impoverished soils had the highest proportion of nonmycorrhizal (NM) species, the lowest percentage of mycorrhizal colonization, and the greatest diversity of root specializations. The large spectrum of leaf P concentration and variation in root morphologies show high functional diversity for nutritional strategies. Higher leaf Mn concentrations were observed in NM compared with AM species, indicating that carboxylate-releasing P-mobilizing strategies are likely to be present in NM species. The soils of the campos rupestres are similar to the most P-impoverished soils in the world. The prevalence of NM strategies indicates a strong global functional convergence in plant mineral nutrition strategies among severely P-impoverished ecosystems.
Resumo:
A fosmid metagenomic library was constructed with total community DNA obtained from a municipal wastewater treatment plant (MWWTP), with the aim of identifying new FeFe-hydrogenase genes encoding the enzymes most important for hydrogen metabolism. The dataset generated by pyrosequencing of a fosmid library was mined to identify environmental gene tags (EGTs) assigned to FeFe-hydrogenase. The majority of EGTs representing FeFe-hydrogenase genes were affiliated with the class Clostridia, suggesting that this group is the main hydrogen producer in the MWWTP analyzed. Based on assembled sequences, three FeFe-hydrogenase genes were predicted based on detection of the L2 motif (MPCxxKxxE) in the encoded gene product, confirming true FeFe-hydrogenase sequences. These sequences were used to design specific primers to detect fosmids encoding FeFe-hydrogenase genes predicted from the dataset. Three identified fosmids were completely sequenced. The cloned genomic fragments within these fosmids are closely related to members of the Spirochaetaceae, Bacteroidales and Firmicutes, and their FeFe-hydrogenase sequences are characterized by the structure type M3, which is common to clostridial enzymes. FeFe-hydrogenase sequences found in this study represent hitherto undetected sequences, indicating the high genetic diversity regarding these enzymes in MWWTP. Results suggest that MWWTP have to be considered as reservoirs for new FeFe-hydrogenase genes.
Resumo:
High-speed counter-current chromatography (HSCCC) is a major tool for the fast separation of natural products from plants. It was used for the preparative isolation of the flavonoid monoglucosides present in the aerial parts of the Davilla elliptica St. Hill. (Dilleniaceae). This species is used in Brazilian folk medicine for the treatment of gastric disorders. The optimum solvent system used was composed of a mixture of ethyl acetate-n-propanol-water (140:8:80, v/v/v) and led to a successful separation of quercetin-3-O-alpha-L-rhamnopyranoside and myricetin-3-O-alpha-L-rhamnopyranoside in approximately 3.0 hours with purity higher than 95%. Identification was performed by ¹H NMR, 13C NMR and HPLC-UV-DAD analyses.
Resumo:
Size distributions in woody plant populations have been used to assess their regeneration status, assuming that size structures with reverse-J shapes represent stable populations. We present an empirical approach of this issue using five woody species from the Cerrado. Considering count data for all plants of these five species over a 12-year period, we analyzed size distribution by: a) plotting frequency distributions and their adjustment to the negative exponential curve and b) calculating the Gini coefficient. To look for a relationship between size structure and future trends, we considered the size structures from the first census year. We analyzed changes in number over time and performed a simple population viability analysis, which gives the mean population growth rate, its variance and the probability of extinction in a given time period. Frequency distributions and the Gini coefficient were not able to predict future trends in population numbers. We recommend that managers should not use measures of size structure as a basis for management decisions without applying more appropriate demographic studies.
Resumo:
Cecropia glaziovii is a tree with used in Brazilian popular medicine. Methods allowing the clonal propagation of this species are of great interest for superior genotype multiplication and perpetuation. For this reason, we examined the effect of different culture media and different types of explants on adventitious shoot regeneration from callus and buds of C. glaziovii. Leaves, petioles and stipules obtained from aseptically grown seedlings or from pre-sterilized plants were used to initiate cultures. Adventitious shoot regeneration was achieved when apical and axillary buds were inoculated on gelled Murashige & Skoog (MS) medium supplemented with 6-benzylaminopurine alone (BAP) (1.0, 5.0 or 10.0 mg L-1) or combined with -naphthalene acetic acid (NAA) (1.0 or 2.0 mg L-1), after 40 days of culture. Best callus production was obtained after 30 days of petioles' culture on gelled MS medium with 2,4 dichlorophenoxyacetic acid (2,4-D) (5.0 mg L-1) combined with BAP (1.0 mg L-1). Successful shoot regeneration from callus was achieved when MS medium supplemented with zeatin (ZEA) (0.1 mg L-1) alone or combined with 2,4-D (1.0 or 5.0 mg L-1) was inoculated with friable callus obtained from petioles. All shoots were rooted by inoculation on MS medium supplemented with indole-3-acetic acid (IAA) (1.0 mg L-1). Rooted plants transferred to potting soil were successfully established. All in vitro regenerated plantlets showed to be normal, without morphological variations, being also identical to the source plant. Our study has shown that C. glaziovii can be propagated by tissue culture methods, allowing large scale multiplication of superior plants for pharmacological purposes.
Resumo:
A ferrugem asiática, causada pelo fungo Phakopsora pachyrhizi, apresenta-se como um dos mais graves problemas fitossanitários da cultura da soja no Brasil, principalmente por não existirem, até o presente momento, cultivares com níveis de resistência satisfatórios. Objetivou-se estudar a influência da luminosidade e da camada de cera das superfícies foliares na infecção de folhas de soja por P. pachyrhizi. A superfície adaxial ou abaxial de folíolos do primeiro trifólio de plantas da cultivar BRS 154, estádio fenológico V2, foi inoculada com suspensão de 10(5) urediniósporos/mL-1. As plantas foram mantidas por 24 horas em câmara úmida e temperatura de 23ºC, sob luz ou escuro, em delineamento fatorial. Posteriormente, permaneceram 14 dias em fotoperíodo de 12 horas, sendo em seguida avaliada a densidade de lesões e a severidade da doença. Em um segundo experimento, avaliou-se in vitro , no escuro e na luz, a porcentagem de germinação de urediniósporos e de formação de apressórios. As camadas de cera adaxial e abaxial dos folíolos foram analisadas quantitativamente (extrações com clorofórmio) e estruturalmente (microscopia eletrônica de varredura). A densidade de lesões e a severidade foram maiores quando se inoculou a superfície adaxial de plantas incubadas no escuro, sem interação significativa entre os fatores. A germinação dos esporos no escuro (40,7%) foi significativamente superior à germinação na luz (28,5%). O mesmo ocorreu para a formação de apressórios, no escuro (24,7%) e na luz (12,8%). A quantidade e a estrutura das ceras epicuticulares não apresentaram diferenças entre as duas superfícies.
Resumo:
Ferruginous "campos rupestres" are a particular type of vegetation growing on iron-rich primary soils. We investigated the influence of soil properties on plant species abundance at two sites of ferruginous "campos rupestres" and one site of quartzitic "campo rupestre", all of them in "Quadrilátero Ferrífero", in Minas Gerais State, southeastern Brazil. In each site, 30 quadrats were sampled to assess plant species composition and abundance, and soil samples were taken to perform chemical and physical analyses. The analyzed soils are strongly acidic and presented low fertility and high levels of metallic cations; a principal component analysis of soil data showed a clear segregation among sites due mainly to fertility and heavy metals content, especially Cu, Zn, and Pb. The canonical correspondence analysis indicated a strong correlation between plant species abundance and soil properties, also segregating the sites.
Resumo:
Stingless bees collect plant resins and make it into propolis, although they have a wider range of use for this material than do honey bees (Apis spp.). Plebeia spp. workers employ propolis mixed with wax (cerumen) for constructing and sealing nest structures, while they use viscous (sticky) propolis for defense by applying it onto their enemies. Isolated viscous propolis deposits are permanently maintained at the interior of their colonies, as also seen in other Meliponini species. Newly-emerged Plebeia emerina (Friese) workers were observed stuck to and unable to escape these viscous propolis stores. We examined the division of labor involved in propolis manipulation, by observing marked bees of known age in four colonies of P. emerina from southern Brazil. Activities on brood combs, the nest involucrum and food pots were observed from the first day of life of the marked bees. However, work on viscous propolis deposits did not begin until the 13th day of age and continued until the 56th day (maximum lifespan in our sample). Although worker bees begin to manipulate cerumen early, they seem to be unable to handle viscous propolis till they become older.
Resumo:
This paper addresses the capacitated lot sizing problem (CLSP) with a single stage composed of multiple plants, items and periods with setup carry-over among the periods. The CLSP is well studied and many heuristics have been proposed to solve it. Nevertheless, few researches explored the multi-plant capacitated lot sizing problem (MPCLSP), which means that few solution methods were proposed to solve it. Furthermore, to our knowledge, no study of the MPCLSP with setup carry-over was found in the literature. This paper presents a mathematical model and a GRASP (Greedy Randomized Adaptive Search Procedure) with path relinking to the MPCLSP with setup carry-over. This solution method is an extension and adaptation of a previously adopted methodology without the setup carry-over. Computational tests showed that the improvement of the setup carry-over is significant in terms of the solution value with a low increase in computational time.
Resumo:
Results obtained in a pilot-scale unit designed for COD removal and p-TBC (p-tert-butylcatechol) recovery from a butadiene washing stream (pH 14, 200,000 mg COD L-1, highly toxic) at a petrochemical industry are presented. By adding H3PO4, phase separation is achieved and p-TBC is successfully recovered (88 g L-1 of washing stream). Information (time for phase separation and organic phase characterization) was gathered for designing a future industrial unit. The estimated heat generation rate was 990 kJ min-1 and 15 min were enough to promote phase separation for a liquid column of approximately 1.15 m.