872 resultados para Particle swarm optimization algorithm PSO


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite the extensive literature in finding new models to replace the Markowitz model or trying to increase the accuracy of its input estimations, there is less studies about the impact on the results of using different optimization algorithms. This paper aims to add some research to this field by comparing the performance of two optimization algorithms in drawing the Markowitz Efficient Frontier and in real world investment strategies. Second order cone programming is a faster algorithm, appears to be more efficient, but is impossible to assert which algorithm is better. Quadratic Programming often shows superior performance in real investment strategies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Earthworks involve the levelling or shaping of a target area through the moving or processing of the ground surface. Most construction projects require earthworks, which are heavily dependent on mechanical equipment (e.g., excavators, trucks and compactors). Often, earthworks are the most costly and time-consuming component of infrastructure constructions (e.g., road, railway and airports) and current pressure for higher productivity and safety highlights the need to optimize earthworks, which is a nontrivial task. Most previous attempts at tackling this problem focus on single-objective optimization of partial processes or aspects of earthworks, overlooking the advantages of a multi-objective and global optimization. This work describes a novel optimization system based on an evolutionary multi-objective approach, capable of globally optimizing several objectives simultaneously and dynamically. The proposed system views an earthwork construction as a production line, where the goal is to optimize resources under two crucial criteria (costs and duration) and focus the evolutionary search (non-dominated sorting genetic algorithm-II) on compaction allocation, using linear programming to distribute the remaining equipment (e.g., excavators). Several experiments were held using real-world data from a Portuguese construction site, showing that the proposed system is quite competitive when compared with current manual earthwork equipment allocation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Firefly Algorithm is a recent swarm intelligence method, inspired by the social behavior of fireflies, based on their flashing and attraction characteristics [1, 2]. In this paper, we analyze the implementation of a dynamic penalty approach combined with the Firefly algorithm for solving constrained global optimization problems. In order to assess the applicability and performance of the proposed method, some benchmark problems from engineering design optimization are considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Natural selection favors the survival and reproduction of organisms that are best adapted to their environment. Selection mechanism in evolutionary algorithms mimics this process, aiming to create environmental conditions in which artificial organisms could evolve solving the problem at hand. This paper proposes a new selection scheme for evolutionary multiobjective optimization. The similarity measure that defines the concept of the neighborhood is a key feature of the proposed selection. Contrary to commonly used approaches, usually defined on the basis of distances between either individuals or weight vectors, it is suggested to consider the similarity and neighborhood based on the angle between individuals in the objective space. The smaller the angle, the more similar individuals. This notion is exploited during the mating and environmental selections. The convergence is ensured by minimizing distances from individuals to a reference point, whereas the diversity is preserved by maximizing angles between neighboring individuals. Experimental results reveal a highly competitive performance and useful characteristics of the proposed selection. Its strong diversity preserving ability allows to produce a significantly better performance on some problems when compared with stat-of-the-art algorithms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The decision support models in intensive care units are developed to support medical staff in their decision making process. However, the optimization of these models is particularly difficult to apply due to dynamic, complex and multidisciplinary nature. Thus, there is a constant research and development of new algorithms capable of extracting knowledge from large volumes of data, in order to obtain better predictive results than the current algorithms. To test the optimization techniques a case study with real data provided by INTCare project was explored. This data is concerning to extubation cases. In this dataset, several models like Evolutionary Fuzzy Rule Learning, Lazy Learning, Decision Trees and many others were analysed in order to detect early extubation. The hydrids Decision Trees Genetic Algorithm, Supervised Classifier System and KNNAdaptive obtained the most accurate rate 93.2%, 93.1%, 92.97% respectively, thus showing their feasibility to work in a real environment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The goal of the present work was assess the feasibility of using a pseudo-inverse and null-space optimization approach in the modeling of the shoulder biomechanics. The method was applied to a simplified musculoskeletal shoulder model. The mechanical system consisted in the arm, and the external forces were the arm weight, 6 scapulo-humeral muscles and the reaction at the glenohumeral joint, which was considered as a spherical joint. The muscle wrapping was considered around the humeral head assumed spherical. The dynamical equations were solved in a Lagrangian approach. The mathematical redundancy of the mechanical system was solved in two steps: a pseudo-inverse optimization to minimize the square of the muscle stress and a null-space optimization to restrict the muscle force to physiological limits. Several movements were simulated. The mathematical and numerical aspects of the constrained redundancy problem were efficiently solved by the proposed method. The prediction of muscle moment arms was consistent with cadaveric measurements and the joint reaction force was consistent with in vivo measurements. This preliminary work demonstrated that the developed algorithm has a great potential for more complex musculoskeletal modeling of the shoulder joint. In particular it could be further applied to a non-spherical joint model, allowing for the natural translation of the humeral head in the glenoid fossa.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluate the performance of different optimization techniques developed in the context of optical flowcomputation with different variational models. In particular, based on truncated Newton methods (TN) that have been an effective approach for large-scale unconstrained optimization, we develop the use of efficient multilevel schemes for computing the optical flow. More precisely, we evaluate the performance of a standard unidirectional multilevel algorithm - called multiresolution optimization (MR/OPT), to a bidrectional multilevel algorithm - called full multigrid optimization (FMG/OPT). The FMG/OPT algorithm treats the coarse grid correction as an optimization search direction and eventually scales it using a line search. Experimental results on different image sequences using four models of optical flow computation show that the FMG/OPT algorithm outperforms both the TN and MR/OPT algorithms in terms of the computational work and the quality of the optical flow estimation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Graph pebbling is a network model for studying whether or not a given supply of discrete pebbles can satisfy a given demand via pebbling moves. A pebbling move across an edge of a graph takes two pebbles from one endpoint and places one pebble at the other endpoint; the other pebble is lost in transit as a toll. It has been shown that deciding whether a supply can meet a demand on a graph is NP-complete. The pebbling number of a graph is the smallest t such that every supply of t pebbles can satisfy every demand of one pebble. Deciding if the pebbling number is at most k is NP 2 -complete. In this paper we develop a tool, called theWeight Function Lemma, for computing upper bounds and sometimes exact values for pebbling numbers with the assistance of linear optimization. With this tool we are able to calculate the pebbling numbers of much larger graphs than in previous algorithms, and much more quickly as well. We also obtain results for many families of graphs, in many cases by hand, with much simpler and remarkably shorter proofs than given in previously existing arguments (certificates typically of size at most the number of vertices times the maximum degree), especially for highly symmetric graphs. Here we apply theWeight Function Lemma to several specific graphs, including the Petersen, Lemke, 4th weak Bruhat, Lemke squared, and two random graphs, as well as to a number of infinite families of graphs, such as trees, cycles, graph powers of cycles, cubes, and some generalized Petersen and Coxeter graphs. This partly answers a question of Pachter, et al., by computing the pebbling exponent of cycles to within an asymptotically small range. It is conceivable that this method yields an approximation algorithm for graph pebbling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Floor cleaning is a typical robot application. There are several mobile robots aviable in the market for domestic applications most of them with random path-planning algorithms. In this paper we study the cleaning coverage performances of a random path-planning mobile robot and propose an optimized control algorithm, some methods to estimate the are of the room, the evolution of the cleaning and the time needed for complete coverage.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, protein-ligand docking has become a powerful tool for drug development. Although several approaches suitable for high throughput screening are available, there is a need for methods able to identify binding modes with high accuracy. This accuracy is essential to reliably compute the binding free energy of the ligand. Such methods are needed when the binding mode of lead compounds is not determined experimentally but is needed for structure-based lead optimization. We present here a new docking software, called EADock, that aims at this goal. It uses an hybrid evolutionary algorithm with two fitness functions, in combination with a sophisticated management of the diversity. EADock is interfaced with the CHARMM package for energy calculations and coordinate handling. A validation was carried out on 37 crystallized protein-ligand complexes featuring 11 different proteins. The search space was defined as a sphere of 15 A around the center of mass of the ligand position in the crystal structure, and on the contrary to other benchmarks, our algorithm was fed with optimized ligand positions up to 10 A root mean square deviation (RMSD) from the crystal structure, excluding the latter. This validation illustrates the efficiency of our sampling strategy, as correct binding modes, defined by a RMSD to the crystal structure lower than 2 A, were identified and ranked first for 68% of the complexes. The success rate increases to 78% when considering the five best ranked clusters, and 92% when all clusters present in the last generation are taken into account. Most failures could be explained by the presence of crystal contacts in the experimental structure. Finally, the ability of EADock to accurately predict binding modes on a real application was illustrated by the successful docking of the RGD cyclic pentapeptide on the alphaVbeta3 integrin, starting far away from the binding pocket.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We evaluate the performance of different optimization techniques developed in the context of optical flow computation with different variational models. In particular, based on truncated Newton methods (TN) that have been an effective approach for large-scale unconstrained optimization, we de- velop the use of efficient multilevel schemes for computing the optical flow. More precisely, we evaluate the performance of a standard unidirectional mul- tilevel algorithm - called multiresolution optimization (MR/OPT), to a bidrec- tional multilevel algorithm - called full multigrid optimization (FMG/OPT). The FMG/OPT algorithm treats the coarse grid correction as an optimiza- tion search direction and eventually scales it using a line search. Experimental results on different image sequences using four models of optical flow com- putation show that the FMG/OPT algorithm outperforms both the TN and MR/OPT algorithms in terms of the computational work and the quality of the optical flow estimation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Blowing and drifting of snow is a major concern for transportation efficiency and road safety in regions where their development is common. One common way to mitigate snow drift on roadways is to install plastic snow fences. Correct design of snow fences is critical for road safety and maintaining the roads open during winter in the US Midwest and other states affected by large snow events during the winter season and to maintain costs related to accumulation of snow on the roads and repair of roads to minimum levels. Of critical importance for road safety is the protection against snow drifting in regions with narrow rights of way, where standard fences cannot be deployed at the recommended distance from the road. Designing snow fences requires sound engineering judgment and a thorough evaluation of the potential for snow blowing and drifting at the construction site. The evaluation includes site-specific design parameters typically obtained with semi-empirical relations characterizing the local transport conditions. Among the critical parameters involved in fence design and assessment of their post-construction efficiency is the quantification of the snow accumulation at fence sites. The present study proposes a joint experimental and numerical approach to monitor snow deposits around snow fences, quantitatively estimate snow deposits in the field, asses the efficiency and improve the design of snow fences. Snow deposit profiles were mapped using GPS based real-time kinematic surveys (RTK) conducted at the monitored field site during and after snow storms. The monitored site allowed testing different snow fence designs under close to identical conditions over four winter seasons. The study also discusses the detailed monitoring system and analysis of weather forecast and meteorological conditions at the monitored sites. A main goal of the present study was to assess the performance of lightweight plastic snow fences with a lower porosity than the typical 50% porosity used in standard designs of such fences. The field data collected during the first winter was used to identify the best design for snow fences with a porosity of 50%. Flow fields obtained from numerical simulations showed that the fence design that worked the best during the first winter induced the formation of an elongated area of small velocity magnitude close to the ground. This information was used to identify other candidates for optimum design of fences with a lower porosity. Two of the designs with a fence porosity of 30% that were found to perform well based on results of numerical simulations were tested in the field during the second winter along with the best performing design for fences with a porosity of 50%. Field data showed that the length of the snow deposit away from the fence was reduced by about 30% for the two proposed lower-porosity (30%) fence designs compared to the best design identified for fences with a porosity of 50%. Moreover, one of the lower-porosity designs tested in the field showed no significant snow deposition within the bottom gap region beneath the fence. Thus, a major outcome of this study is to recommend using plastic snow fences with a porosity of 30%. It is expected that this lower-porosity design will continue to work well for even more severe snow events or for successive snow events occurring during the same winter. The approach advocated in the present study allowed making general recommendations for optimizing the design of lower-porosity plastic snow fences. This approach can be extended to improve the design of other types of snow fences. Some preliminary work for living snow fences is also discussed. Another major contribution of this study is to propose, develop protocols and test a novel technique based on close range photogrammetry (CRP) to quantify the snow deposits trapped snow fences. As image data can be acquired continuously, the time evolution of the volume of snow retained by a snow fence during a storm or during a whole winter season can, in principle, be obtained. Moreover, CRP is a non-intrusive method that eliminates the need to perform man-made measurements during the storms, which are difficult and sometimes dangerous to perform. Presently, there is lots of empiricism in the design of snow fences due to lack of data on fence storage capacity on how snow deposits change with the fence design and snow storm characteristics and in the estimation of the main parameters used by the state DOTs to design snow fences at a given site. The availability of such information from CRP measurements should provide critical data for the evaluation of the performance of a certain snow fence design that is tested by the IDOT. As part of the present study, the novel CRP method is tested at several sites. The present study also discusses some attempts and preliminary work to determine the snow relocation coefficient which is one of the main variables that has to be estimated by IDOT engineers when using the standard snow fence design software (Snow Drift Profiler, Tabler, 2006). Our analysis showed that standard empirical formulas did not produce reasonable values when applied at the Iowa test sites monitored as part of the present study and that simple methods to estimate this variable are not reliable. The present study makes recommendations for the development of a new methodology based on Large Scale Particle Image Velocimetry that can directly measure the snow drift fluxes and the amount of snow relocated by the fence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

As a result of forensic investigations of problems across Iowa, a research study was developed aimed at providing solutions to identified problems through better management and optimization of the available pavement geotechnical materials and through ground improvement, soil reinforcement, and other soil treatment techniques. The overall goal was worked out through simple laboratory experiments, such as particle size analysis, plasticity tests, compaction tests, permeability tests, and strength tests. A review of the problems suggested three areas of study: pavement cracking due to improper management of pavement geotechnical materials, permeability of mixed-subgrade soils, and settlement of soil above the pipe due to improper compaction of the backfill. This resulted in the following three areas of study: (1) The optimization and management of earthwork materials through general soil mixing of various select and unsuitable soils and a specific example of optimization of materials in earthwork construction by soil mixing; (2) An investigation of the saturated permeability of compacted glacial till in relation to validation and prediction with the Enhanced Integrated Climatic Model (EICM); and (3) A field investigation and numerical modeling of culvert settlement. For each area of study, a literature review was conducted, research data were collected and analyzed, and important findings and conclusions were drawn. It was found that optimum mixtures of select and unsuitable soils can be defined that allow the use of unsuitable materials in embankment and subgrade locations. An improved model of saturated hydraulic conductivity was proposed for use with glacial soils from Iowa. The use of proper trench backfill compaction or the use of flowable mortar will reduce the potential for developing a bump above culverts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

3 Summary 3. 1 English The pharmaceutical industry has been facing several challenges during the last years, and the optimization of their drug discovery pipeline is believed to be the only viable solution. High-throughput techniques do participate actively to this optimization, especially when complemented by computational approaches aiming at rationalizing the enormous amount of information that they can produce. In siiico techniques, such as virtual screening or rational drug design, are now routinely used to guide drug discovery. Both heavily rely on the prediction of the molecular interaction (docking) occurring between drug-like molecules and a therapeutically relevant target. Several softwares are available to this end, but despite the very promising picture drawn in most benchmarks, they still hold several hidden weaknesses. As pointed out in several recent reviews, the docking problem is far from being solved, and there is now a need for methods able to identify binding modes with a high accuracy, which is essential to reliably compute the binding free energy of the ligand. This quantity is directly linked to its affinity and can be related to its biological activity. Accurate docking algorithms are thus critical for both the discovery and the rational optimization of new drugs. In this thesis, a new docking software aiming at this goal is presented, EADock. It uses a hybrid evolutionary algorithm with two fitness functions, in combination with a sophisticated management of the diversity. EADock is interfaced with .the CHARMM package for energy calculations and coordinate handling. A validation was carried out on 37 crystallized protein-ligand complexes featuring 11 different proteins. The search space was defined as a sphere of 15 R around the center of mass of the ligand position in the crystal structure, and conversely to other benchmarks, our algorithms was fed with optimized ligand positions up to 10 A root mean square deviation 2MSD) from the crystal structure. This validation illustrates the efficiency of our sampling heuristic, as correct binding modes, defined by a RMSD to the crystal structure lower than 2 A, were identified and ranked first for 68% of the complexes. The success rate increases to 78% when considering the five best-ranked clusters, and 92% when all clusters present in the last generation are taken into account. Most failures in this benchmark could be explained by the presence of crystal contacts in the experimental structure. EADock has been used to understand molecular interactions involved in the regulation of the Na,K ATPase, and in the activation of the nuclear hormone peroxisome proliferatoractivated receptors a (PPARa). It also helped to understand the action of common pollutants (phthalates) on PPARy, and the impact of biotransformations of the anticancer drug Imatinib (Gleevec®) on its binding mode to the Bcr-Abl tyrosine kinase. Finally, a fragment-based rational drug design approach using EADock was developed, and led to the successful design of new peptidic ligands for the a5ß1 integrin, and for the human PPARa. In both cases, the designed peptides presented activities comparable to that of well-established ligands such as the anticancer drug Cilengitide and Wy14,643, respectively. 3.2 French Les récentes difficultés de l'industrie pharmaceutique ne semblent pouvoir se résoudre que par l'optimisation de leur processus de développement de médicaments. Cette dernière implique de plus en plus. de techniques dites "haut-débit", particulièrement efficaces lorsqu'elles sont couplées aux outils informatiques permettant de gérer la masse de données produite. Désormais, les approches in silico telles que le criblage virtuel ou la conception rationnelle de nouvelles molécules sont utilisées couramment. Toutes deux reposent sur la capacité à prédire les détails de l'interaction moléculaire entre une molécule ressemblant à un principe actif (PA) et une protéine cible ayant un intérêt thérapeutique. Les comparatifs de logiciels s'attaquant à cette prédiction sont flatteurs, mais plusieurs problèmes subsistent. La littérature récente tend à remettre en cause leur fiabilité, affirmant l'émergence .d'un besoin pour des approches plus précises du mode d'interaction. Cette précision est essentielle au calcul de l'énergie libre de liaison, qui est directement liée à l'affinité du PA potentiel pour la protéine cible, et indirectement liée à son activité biologique. Une prédiction précise est d'une importance toute particulière pour la découverte et l'optimisation de nouvelles molécules actives. Cette thèse présente un nouveau logiciel, EADock, mettant en avant une telle précision. Cet algorithme évolutionnaire hybride utilise deux pressions de sélections, combinées à une gestion de la diversité sophistiquée. EADock repose sur CHARMM pour les calculs d'énergie et la gestion des coordonnées atomiques. Sa validation a été effectuée sur 37 complexes protéine-ligand cristallisés, incluant 11 protéines différentes. L'espace de recherche a été étendu à une sphère de 151 de rayon autour du centre de masse du ligand cristallisé, et contrairement aux comparatifs habituels, l'algorithme est parti de solutions optimisées présentant un RMSD jusqu'à 10 R par rapport à la structure cristalline. Cette validation a permis de mettre en évidence l'efficacité de notre heuristique de recherche car des modes d'interactions présentant un RMSD inférieur à 2 R par rapport à la structure cristalline ont été classés premier pour 68% des complexes. Lorsque les cinq meilleures solutions sont prises en compte, le taux de succès grimpe à 78%, et 92% lorsque la totalité de la dernière génération est prise en compte. La plupart des erreurs de prédiction sont imputables à la présence de contacts cristallins. Depuis, EADock a été utilisé pour comprendre les mécanismes moléculaires impliqués dans la régulation de la Na,K ATPase et dans l'activation du peroxisome proliferatoractivated receptor a (PPARa). Il a également permis de décrire l'interaction de polluants couramment rencontrés sur PPARy, ainsi que l'influence de la métabolisation de l'Imatinib (PA anticancéreux) sur la fixation à la kinase Bcr-Abl. Une approche basée sur la prédiction des interactions de fragments moléculaires avec protéine cible est également proposée. Elle a permis la découverte de nouveaux ligands peptidiques de PPARa et de l'intégrine a5ß1. Dans les deux cas, l'activité de ces nouveaux peptides est comparable à celles de ligands bien établis, comme le Wy14,643 pour le premier, et le Cilengitide (PA anticancéreux) pour la seconde.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The parameter setting of a differential evolution algorithm must meet several requirements: efficiency, effectiveness, and reliability. Problems vary. The solution of a particular problem can be represented in different ways. An algorithm most efficient in dealing with a particular representation may be less efficient in dealing with other representations. The development of differential evolution-based methods contributes substantially to research on evolutionary computing and global optimization in general. The objective of this study is to investigatethe differential evolution algorithm, the intelligent adjustment of its controlparameters, and its application. In the thesis, the differential evolution algorithm is first examined using different parameter settings and test functions. Fuzzy control is then employed to make control parameters adaptive based on an optimization process and expert knowledge. The developed algorithms are applied to training radial basis function networks for function approximation with possible variables including centers, widths, and weights of basis functions and both having control parameters kept fixed and adjusted by fuzzy controller. After the influence of control variables on the performance of the differential evolution algorithm was explored, an adaptive version of the differential evolution algorithm was developed and the differential evolution-based radial basis function network training approaches were proposed. Experimental results showed that the performance of the differential evolution algorithm is sensitive to parameter setting, and the best setting was found to be problem dependent. The fuzzy adaptive differential evolution algorithm releases the user load of parameter setting and performs better than those using all fixedparameters. Differential evolution-based approaches are effective for training Gaussian radial basis function networks.