Line search multilevel optimization as computational methods for dense optical flow


Autoria(s): Kalmoun, El Mostafa; Garrido, Luis; Caselles, Vicent
Contribuinte(s)

Centre de Recerca Matemàtica

Data(s)

01/10/2010

Resumo

We evaluate the performance of different optimization techniques developed in the context of optical flowcomputation with different variational models. In particular, based on truncated Newton methods (TN) that have been an effective approach for large-scale unconstrained optimization, we develop the use of efficient multilevel schemes for computing the optical flow. More precisely, we evaluate the performance of a standard unidirectional multilevel algorithm - called multiresolution optimization (MR/OPT), to a bidrectional multilevel algorithm - called full multigrid optimization (FMG/OPT). The FMG/OPT algorithm treats the coarse grid correction as an optimization search direction and eventually scales it using a line search. Experimental results on different image sequences using four models of optical flow computation show that the FMG/OPT algorithm outperforms both the TN and MR/OPT algorithms in terms of the computational work and the quality of the optical flow estimation.

Formato

30

327263 bytes

application/pdf

Identificador

http://hdl.handle.net/2072/152170

Idioma(s)

eng

Publicador

Centre de Recerca Matemàtica

Relação

Prepublicacions del Centre de Recerca Matemàtica;973

Direitos

Aquest document està subjecte a una llicència d'ús de Creative Commons, amb la qual es permet copiar, distribuir i comunicar públicament l'obra sempre que se'n citin l'autor original, la universitat i el centre i no se'n faci cap ús comercial ni obra derivada, tal com queda estipulat en la llicència d'ús (http://creativecommons.org/licenses/by-nc-nd/2.5/es/)

Palavras-Chave #Optimització matemàtica #519.1 - Teoria general de l'anàlisi combinatòria. Teoria de grafs
Tipo

info:eu-repo/semantics/preprint