953 resultados para Odontoblast-like MDPC-23 cells


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The expression of peripheral tissue antigens (PTAs) in the thymus by medullary thymic epithelial cells (mTECs) is essential for the central self-tolerance in the generation of the T cell repertoire. Due to heterogeneity of autoantigen representation, this phenomenon has been termed promiscuous gene expression (PGE), in which the autoimmune regulator (Aire) gene plays a key role as a transcription factor in part of these genes. Here we used a microarray strategy to access PGE in cultured murine CD80(+) 3.10 mTEC line. Hierarchical clustering of the data allowed observation that PTA genes were differentially expressed being possible to found their respective induced or repressed mRNAs. To further investigate the control of PGE, we tested the hypothesis that genes involved in this phenomenon might also be modulated by transcriptional network. We then reconstructed such network based on the microarray expression data, featuring the guanylate cyclase 2d (Gucy2d) gene as a main node. In such condition, we established 167 positive and negative interactions with downstream PTA genes. Silencing Aire by RNA interference, Gucy2d while down regulated established a larger number (355) of interactions with PTA genes. T- and G-boxes corresponding to AIRE protein binding sites located upstream to ATG codon of Gucy2d supports this effect. These findings provide evidence that Aire plays a role in association with Gucy2d, which is connected to Several PTA genes and establishes a cascade-like transcriptional control of promiscuous gene expression in mTEC cells. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

293T and Sk-Hep-1 cells were transduced with a replication-defective self-inactivating HIV-1 derived vector carrying FVIII cDNA. The genomic DNA was sequenced to reveal LTR/human genome junctions and integration sites. One hundred and thirty-two sequences matched human sequences, with an identity of at least 98%. The integration sites in 293T-FVIIIDB and in Sk-Hep-FVIIIDB cells were preferentially located in gene regions. The integrations in both cell lines were distant from the CpG islands and from the transcription start sites. A comparison between the two cell lines showed that the lentiviral-transduced DNA had the same preferred regions in the two different cell lines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IL-23/IL-17-induced neutrophil recruitment plays a pivotal role in rheumatoid arthritis (RA). However, the mechanism of the neutrophil recruitment is obscure. Here we report that prostaglandin enhances the IL-23/IL-17-induced neutrophil migration in a murine model of RA by inhibiting IL-12 and IFN gamma production. Methylated BSA (mBSA) and IL-23-induced neutrophil migration was inhibited by anti-IL-23 and anti-IL-17 antibodies, COX inhibitors, IL-12, or IFN gamma but was enhanced by prostaglandin E(2) (PGE(2)). IL-23-induced IL-17 production was increased by PGE(2) and suppressed by COX-inhibition or IL-12. Furthermore, COX inhibition failed to reduce IL-23-induced neutrophil migration in IL-12- or IFN gamma-deficient mice. IL-17-induced neutrophil migration was not affected by COX inhibitors, IL-12, or IFN gamma but was inhibited by MK886 (a leukotriene synthesis inhibitor), anti-TNF alpha, anti-CXCL1, and anti-CXCL5 antibodies and by repertaxin (a CXCR1/2 antagonist). These treatments all inhibited mBSA- or IL-23-induced neutrophil migration. IL-17 induced neutrophil chemotaxis through a CXC chemokines-dependent pathway. Our results suggest that prostaglandin plays an important role in IL-23-induced neutrophil migration in arthritis by enhancing IL-17 synthesis and by inhibiting IL-12 and IFN gamma production. We thus provide a mechanism for the pathogenic role of the IL-23/IL-17 axis in RA and also suggest an additional mechanism of action for nonsteroidal anti-inflammatory drugs.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subcutaneous heat-coagulated egg white implants (EWI) induce chronic, intense local eosinophilia in mice, followed by asthma-like responses to airway ovalbumin challenge. Our goal was to define the mechanisms of selective eosinophil accumulation in the EWI model. EWI carriers were challenged i.p. with ovalbumin and the contributions of cellular immunity and inflammatory mediators to the resulting leukocyte accumulation were defined through cell transfer and pharmacological inhibition protocols. Eosinophil recruitment required Major Histocompatibility Complex Class It expression, and was abolished by the leukotriene B4 (LTB4) receptor antagonist CP 105.696, the 5-lipoxygenase inhibitor BWA4C and the 5-lipoxygenase activating protein inhibitor MK886. Eosinophil recruitment in EWI carriers followed transfer of: a) CD4(+) (but not CD4(-)) cells, harvested from EWI donors and restimulated ex vivo; b) their cell-free supernatants, containing LTB4. Restimulation in the presence of MK886 was ineffective. CC chemokine receptor ligand (CCL)5 and CCL2 were induced by ovalbumin challenge in vivo. mRNA for CCL17 and CCL11 was induced in ovalbumin-restimulated CD4(+) cells ex vivo. MK886 blocked induction of CCL17 Pretreatment of EWI carriers with MK886 eliminated the effectiveness of exogenously administered CCL11, CCL2 and CCL5. In conclusion, chemokine-producing, ovalburnin-restimulated CD4(+) cells initiate eosinophil recruitment which is strictly dependent on LTB4 production. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Cannabidiol is a chemical constituent from Cannabis sativa and it has multiple mechanisms of action, including antidepressant effects. The main objective of the present study was to evaluate behavioural and molecular effects induced by administration of cannabidiol and imipramine in rats. Methods: In the present study, rats were acutely or chronically treated for 14 days once a day with saline, cannabidiol (15, 30 and 60 mg/kg) or imipramine (30 mg/kg) and the animals behaviour was assessed in forced swimming and open-field tests. Afterwards, the prefrontal cortex, hippocampus and amygdala brain-derived neurotrophic factor (BDNF) levels were assessed by enzyme-linked immunosorbent sandwich assay. Results: We observed that both acute and chronic treatments with imipramine at the dose of 30 mg/kg and cannabidiol at the dose of 30 mg/kg reduced immobility time and increased swimming time; climbing time was increased only with imipramine at the dose of 30 mg/kg, without affecting locomotor activity. In addition, chronic treatment with cannabidiol at the dose of 15 mg/kg and imipramine at the dose of 30 mg/kg increased BDNF levels in the rat amygdala. Conclusion: In conclusion, our results indicate that cannabidiol has an antidepressant-like profile and could be a new pharmacological target for the treatment of major depression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Huntington`s disease-like 2 (HDL2) is a neurodegenerative disorder found in people of African ancestry with clinical, radiological, and neuropathological manifestations similar to Huntington`s disease (HD). HDL2 is caused by a pathological expansion of CAG/CTG triplets in exon 2A of the JPH3 gene. We describe four cases of HDL2 from four unrelated families, and discuss their clinical findings. HDL2 should be considered in every patient with an HD-like phenotype who tests negative for the HD mutation, even if African ancestry is not immediately apparent. (C) 2008 Movement Disorder Society

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Porphyria cutanea tarda (PCT) is a metabolic disease characterized by vesicles and blisters in sun-exposed areas and scleroderma-like lesions in sun-exposed and non-sun-exposed areas. Mast cells participate in the pathogenesis of bullous diseases and diseases that show sclerosis, including PCT. Moreover, transforming growth factor-beta (TGF-beta) is the main cytokine in the development of tissue sclerosis. The correlation of mast cells and TGF-beta with the lesions of PCT has not been examined, however. The possible role of mast cells and TGF-beta (and the relationship between them) in the development of PCT lesions is discussed. Methods To quantify mast cells and cells expressing TGF-beta in skin samples from patients with PCT and controls, immunohistochemical studies were performed in tissue sections allied to morphometric analyses. Results The numbers of mast cells and cells expressing TGF-beta per square millimiter were increased in the PCT group relative to controls, and there was a direct and significant correlation between the mast cell number and cells expressing TGF-beta in PCT. Conclusions The results suggest that the increased number of mast cells and of cells expressing TGF-beta, as well as their direct correlation, may contribute to the pathogenesis of the skin lesions in PCT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Periodontal disease is a chronic inflammation of the attachment structures of the teeth, triggered by potentially hazardous microorganisms and the consequent immune-inflammatory responses. In humans, the T helper type 17 (Th17) lineage, characterized by interleukin-17 (IL-17) production, develops under transforming growth factor-beta (TGF-beta), IL-1 beta, and IL-6 signaling, while its pool is maintained by IL-23. Although this subset of cells has been implicated in various autoimmune, inflammatory, and bone-destructive conditions, the exact role of T lymphocytes in chronic periodontitis is still controversial. Therefore, in this study we investigated the presence of Th17 cells in human periodontal disease. Gingival and alveolar bone samples from healthy patients and patients with chronic periodontitis were collected and used for the subsequent assays. The messenger RNA expression for the cytokines IL-17, TGF-beta, IL-1 beta, IL-6, and IL-23 in gingiva or IL-17 and receptor activator for nuclear factor-kappa B ligand in alveolar bone was evaluated by real-time polymerase chain reaction. The production of IL-17, TGF-beta, IL-1 beta, IL-6, and IL-23 proteins was evaluated by immunohistochemistry and the presence of Th17 cells in the inflamed gingiva was confirmed by immunofluorescence confocal microscopy for CD4 and IL-17 colocalization. Our data demonstrated elevated levels of IL-17, TGF-beta, IL-1 beta, IL-6, and IL-23 messenger RNA and protein in diseased tissues as well as the presence of Th17 cells in gingiva from patients with periodontitis. Moreover, IL-17 and the bone resorption factor RANKL were abundantly expressed in the alveolar bone of diseased patients, in contrast to low detection in controls. These results provided strong evidence for the presence of Th17 cells in the sites of chronic inflammation in human periodontal disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neospora caninum is an apicomplexan parasite responsible for major economic losses due to abortions in cattle. Toll-like receptors (TLRs) sense specific microbial products and direct downstream signaling pathways in immune cells, linking innate, and adaptive immunity. Here, we analyze the role of TLR2 on innate and adaptive immune responses during N. caninum infection. Inflammatory peritoneal macrophages and bone marrow-derived dendritic cells exposed to N. caninum-soluble antigens presented an upregulated expression of TLR2. Increased receptor expression was correlated to TLR2/MyD88-dependent antigen-presenting cell maturation and pro-inflammatory cytokine production after stimulation by antigens. Impaired innate responses observed after infection of mice genetically deficient for TLR2((-/-)) was followed by downregulation of adaptive T helper 1 (Th1) immunity, represented by diminished parasite-specific CD4(+) and CD8(+) T-cell proliferation, IFN-gamma:interleukin (IL)-10 ratio, and IgG subclass synthesis. In parallel, TLR2(-/-) mice presented higher parasite burden than wild-type (WT) mice at acute and chronic stages of infection. These results show that initial recognition of N. caninum by TLR2 participates in the generation of effector immune responses against N. caninum and imply that the receptor may be a target for future prophylactic strategies against neosporosis. Immunology and Cell Biology (2010) 88, 825-833; doi:10.1038/icb.2010.52; published online 20 April 2010

Relevância:

30.00% 30.00%

Publicador:

Resumo:

High energy intake and excessive body fatness impair mammogenesis in prepubertal ruminants. High energy intake and excessive fatness also increase serum leptin. Our objective was to determine if an infusion of leptin decreases proliferation of mammary epithelial cells of prepubertal heifers in vivo. Ovine leptin at 100 mu g/quarter per d with or without 10 mu g of insulin-like growth factor (IGF)-I was infused via the teat canal into mammary glands of prepubertal dairy heifers; contralateral quarters were used as controls. After 7 d of treatment, bromodeoxyuridine was infused intravenously and heifers were slaughtered similar to 2 h later. Tissue from 3 regions of the mammary parenchyma was collected and immunostained for bromodeoxyuridine (BrdU), proliferating cell nuclear antigen (Ki-67), and caspase-3. Leptin decreased the number of mammary epithelial cells in the S-phase of the cell cycle by 48% in IGF-I-treated quarters and by 19% in saline-treated quarters. Leptin did not alter the number of mammary epithelial cells within the cell cycle, as indicated by Ki-67 labeling. Caspase-3 immunostaining within the mammary parenchyma was very low in these heifers, but leptin significantly increased labeling in saline-treated quarters. Leptin enhanced SOCS-3 expression in IGF-I-treated quarters but did not alter SOCS-1 or SOCS-5 expression. We conclude that a high concentration of leptin in the bovine mammary gland reduces proliferation of mammary epithelial cells. The reduced proliferation is accompanied by an increase in SOCS-3 expression, suggesting a possible mechanism for leptin inhibition of IGF-I action. Whether leptin might be a physiological regulator of mammogenesis remains to be determined.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Menadione is a naphthoquinone used as a vitamin K source in animal feed that can generate reactive oxygen species (ROS) and cause apoptosis. Here, we examined whether menadione reduces development of preimplantation bovine embryos in a ROS-dependent process and tested the hypothesis that actions of menadione would be reduced by insulin-like growth factor-1 (IGF-1). Menadione caused a concentration-dependent decrease in the proportion of embryos that became blastocysts. All concentrations tested (1, 2.5, and 5.0 mu M) inhibited development. Treatment with 100 ng/ml IGF-1 reduced the magnitude of the anti-developmental effects of the two lowest menadione concentrations. Menadione also caused a concentration-dependent increase in the percent of cells positive for the TUNEL reaction. The response was lower for IGF-1-treated embryos. The effects of menadione were mediated by ROS because (1) the anti-developmental effect of menadione was blocked by the antioxidants dithiothreitol and Trolox and (2) menadione caused an increase in ROS generation. Treatment with IGF-1 did not reduce ROS formation in menadione-treated embryos. In conclusion, concentrations of menadione as low as 1.0 mu M can compromise development of bovine preimplantation embryos to the blastocyst stage of development in a ROS-dependent mechanism. Anti-developmental actions of menadione can be blocked by IGF-1 through effects downstream of ROS generation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: Aggregatibacter actinomycetemcomitans is an oral Gram-negative bacterium that contributes to periodontitis progression. Isolated antigens from A. actinomycetemcomitans could be activating innate immune cells through Toll-like receptors (TLRs). In this study, we evaluated the role of TLR4 in the control of A. actinomycetemcomitans infection. Material and Methods: We examined the mechanisms that modulate the outcome of A. actinomycetemcomitans-induced periodontal disease in TLR4(-/-) mice. The production of cytokines was evaluated by ELISA. The bacterial load was determined by counting the number of colony-forming units per gram of tissue. Results: The results showed that TLR4-deficient mice developed less severe periodontitis after A. actinomycetemcomitans infection, characterized by significantly lower bone loss and inflammatory cell migration to periodontal tissues. However, the absence of TLR4 facilitated the A. actinomycetemcomitans dissemination. Myeloperoxidase activity was diminished in the periodontal tissue of TLR4(-/-) mice. We observed a significant reduction in the production of tumour necrosis factor-alpha (TNF-alpha) and interleukin (IL)-1 beta in the periodontal tissue of TLR4(-/-) mice. Conclusion: The results of this study highlighted the role of TLR4 in controlling A. actinomycetemcomitans infection.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans) is a Gram-negative bacterium present in the oral cavity and is usually associated with localized aggressive periodontitis. Isolated antigens from A. actinomycetemcomitans can activate innate immune cells through Toll-like receptors (TLRs), which are molecules that recognize structural components conserved among microorganisms. In this study, we evaluate the role of TLR2 in the recognition of A. actinomycetemcomitans. Methods: Macrophages and neutrophils from knockout mice with targeted disruption of TLR2 (TLR2(-/-) mice) and wild-type mice were collected and used for the subsequent assays. The production of cytokines and chemokines was evaluated by enzyme-linked immunosorbent assay (ELISA), and the presence of apoptotic cells was determined by flow cytometry. In addition, the mechanisms that modulate the outcome of A. actinomycetemcomitans-induced periodontal disease in TLR2(-/-) mice were examined. Results: The results show that TLR2-deficient mice developed more severe periodontitis after A. actinomycetemcomitans infection, characterized by significantly higher bone loss and inflammatory cell migration to periodontal tissues. The inflammatory cell influx into the peritoneal cavities of TLR2(-/-) mice was three-fold lower than that observed for the littermate controls. A significantly diminished production of the cytokines tumor necrosis factor-alpha and interleukin-1 beta as well as the chemokine CC-ligand-5 in the peritoneal cavities of TLR2(-/-) mice was observed. In addition, a high frequency of apoptotic cells in the inflammatory exudates from TLR2(-/-) mice was observed. Phagocytosis and nitric oxide production was diminished in cells from TLR2(-/-) mice, facilitating the dissemination of the pathogen to the spleen. Conclusion: The results of this study highlight the involvement of TLR2 in recognizing A. actinomycetemcomitans and its essential role in controlling A. actinomycetemcomitans infection. J Periodontot 2009,80:2070-2019.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Langerhans cells (LCs) are scattered throughout the epithelium of skin and mucosa and have been associated with the graft-vs.-host disease (GVHD), which is the highest cause of morbidity and mortality in patients who underwent bone marrow transplant (BMT). This study aims at quantifying the LCs in the oral chronic GVHD (cGVHD). Microscopic sections from biopsies carried out in the buccal mucosa of 40 patients who underwent allogenic BMT and developed (20) or not (20) oral cGVHD (Groups 1 and 2, respectively) were utilised. For the control group, free surgical margins of 20 biopsies of non-inflammatory lesions in the buccal mucosa (Group 3) were used. The sections were studied in routine colouration and immunostained for CD1a. Group 1 (with cGVHD) presented a greater number of Langerhans` cells/mm(2) (50.6 +/- 37.2) when compared with the other groups (Group 2, 23.11 +/- 19.7; Group 3, 16.6 +/- 17.3). Our results suggest a greater recruitment of LCs in patients transplanted with cGVHD, probably as a result of cytokines secreted by the inflammatory cells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

T-cell cytokine profiles, anti Porphyromonas gingivalis antibodies and Western blot analysis of antibody responses were examined in BALB/c, CBA/CaH, C57BL6 and DBA/2J mice immunized intraperitoneally with different doses of P. gingivalis outer membrane antigens, Splenic CD4 and CD8 cells were examined for intracytoplasmic interleukin (IL)-4, interferon (IFN)-gamma and IL-LD by FAGS analysis and levels of anti-P. gingivalis antibodies in the serum samples determined by enzyme-linked immunosorbent assay. Western blot analysis was performed on the sera from mice immunized with 100 mug of P. gingivalis antigens. The four strains of mice demonstrated varying degrees of T-cell immunity although the T-cell cytokine profiles exhibited by each strain were not affected by different immunizing doses. While BALB/c and DBA/2J mice exhibited responses that peaked at immunizing doses of 100-200 mug of P. gingivalis antigens, CBA/CaH and C57BL6 demonstrated weak T-cell responsiveness compared with control mice. Like the T-cell responses, serum antibody levels were not dose dependent. DBA/23 exhibited the lowest levels of anti-P. gingivalis antibodies followed by BALB/c with CBA/CaH and C57BL6 mice demonstrating the highest levels. Western blot analysis showed that there were differences in reactivity between the strains to a group of 13 antigens ranging in molecular weight from 15 to 43 kDa. Antibody responses to a number of these bands in BALB/c mice were of low density, whereas CBA/CaH and C57BL6 mice demonstrated high-density bands and DBA/2J mice showed medium to high responses. In conclusion, different immunizing doses of P. gingivalis outer membrane antigens had little effect on the T-cell cytokine responses and serum anti-P. gingivalis antibody levels. Western blot analysis, however, indicated that the four strains of mice exhibited different reactivity to some lower-molecular-weight antigens. Future studies are required to determine the significance of these differences, which may affect the outcome of P. gingivalis infection.