982 resultados para NUCLEON STRUCTURE FUNCTIONS
Resumo:
Continuing our series of papers on the three-dimensional (3D) structure and accurate distances of planetary nebulae (PNe), we present here the results obtained for PN NGC 40. Using data from different sources and wavelengths, we construct 3D photoionization models and derive the physical quantities of the ionizing source and nebular gas. The procedure, discussed in detail in the previous papers, consists of the use of 3D photoionization codes constrained by observational data to derive the 3D nebular structure, physical and chemical characteristics, and ionizing star parameters of the objects by simultaneously fitting the integrated line intensities, the density map, the temperature map, and the observed morphologies in different emission lines. For this particular case we combined hydrodynamical simulations with the photoionization scheme in order to obtain self-consistent distributions of density and velocity of the nebular material. Combining the velocity field with the emission-line cubes we also obtained the synthetic position-velocity plots that are compared to the observations. Finally, using theoretical evolutionary tracks of intermediate-and low-mass stars, we derive the mass and age of the central star of NGC 40 as (0.567 +/- 0.06) M(circle dot) and (5810 +/- 600) yr, respectively. The distance obtained from the fitting procedure was (1150 +/- 120) pc.
Resumo:
Assuming as a starting point the acknowledge that the principles and methods used to build and manage the documentary systems are disperse and lack systematization, this study hypothesizes that the notion of structure, when assuming mutual relationships among its elements, promotes more organical systems and assures better quality and consistency in the retrieval of information concerning users` matters. Accordingly, it aims to explore the fundamentals about the records of information and documentary systems, starting from the notion of structure. In order to achieve that, it presents basic concepts and relative matters to documentary systems and information records. Next to this, it lists the theoretical subsides over the notion of structure, studied by Benveniste, Ferrater Mora, Levi-Strauss, Lopes, Penalver Simo, Saussure, apart from Ducrot, Favero and Koch. Appropriations that have already been done by Paul Otlet, Garcia Gutierrez and Moreiro Gonzalez. In Documentation come as a further topic. It concludes that the adopted notion of structure to make explicit a hypothesis of real systematization achieves more organical systems, as well as it grants pedagogical reference to the documentary tasks.
Resumo:
This study analyzed inter-individual variability of the temporal structure applied in basketball throwing. Ten experienced male athletes in basketball throwing were filmed and a number of kinematic movement parameters analyzed. A biomechanical model provided the relative timing of the shoulder, elbow and wrist joint movements. Inter-individual variability was analyzed using sequencing and relative timing of tem phases of the throw. To compare the variability of the movement phases between subjects a discriminant analysis and an ANOVA were applied. The Tukey test was applied to determine where differences occurred. The significance level was p = 0.05. Inter-individual variability was explained by three concomitant factors: (a) a precision control strategy, (b) a velocity control strategy and (c) intrinsic characteristics of the subjects. Therefore, despite the fact that some actions are common to the basketball throwing pattern each performed demonstrated particular and individual characteristics.
Resumo:
This paper presents a controller design method for fuzzy dynamic systems based on piecewise Lyapunov functions with constraints on the closed-loop pole location. The main idea is to use switched controllers to locate the poles of the system to obtain a satisfactory transient response. It is shown that the global fuzzy system satisfies the requirements for the design and that the control law can be obtained by solving a set of linear matrix inequalities, which can be efficiently solved with commercially available softwares. An example is given to illustrate the application of the proposed method. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The noise, vibration and harshness (NVH) performance of passenger vehicles strongly depends on the fluid-structure interaction between the air in the vehicle cavity and the sheet metal structure of the vehicle. Most of the noise and vibration problems related to this interaction come from resonance peaks of the sheet metal, which are excited by external forces (road, engine, and wind). A reduction in these resonance peaks can be achieved by applying bitumen damping layers, also called deadeners, in the sheet metal. The problem is where these deadeners shall be fixed, which is usually done in a trial-and-error basis. In this work, one proposes the use of embedded sensitivity to locate the deadeners in the sheet metal of the vehicle, more specifically in the vehicle roof. Experimental frequency response functions (FRFs) of the roof are obtained and the data are processed by adopting the embedded sensitivity method, thus obtaining the sensitivity of the resonance peaks on the local increase in damping due to the deadeners. As a result, by examining the sensitivity functions, one can find the optimum location of the deadeners that maximize their effect in reducing the resonance peaks of interest. After locating the deadeners in the optimum positions, it was possible to verify a strong reduction in resonance peaks of the vehicle roof, thus showing the efficiency of the procedure. The main advantage of this procedure is that it only requires FRF measurements of the vehicle in its original state not needing any previous modification of the vehicle structure to find the sensitivity functions. [DOI: 10.1115/1.4000769]
A hybrid Particle Swarm Optimization - Simplex algorithm (PSOS) for structural damage identification
Resumo:
This study proposes a new PSOS-model based damage identification procedure using frequency domain data. The formulation of the objective function for the minimization problem is based on the Frequency Response Functions (FRFs) of the system. A novel strategy for the control of the Particle Swarm Optimization (PSO) parameters based on the Nelder-Mead algorithm (Simplex method) is presented; consequently, the convergence of the PSOS becomes independent of the heuristic constants and its stability and confidence are enhanced. The formulated hybrid method performs better in different benchmark functions than the Simulated Annealing (SA) and the basic PSO (PSO(b)). Two damage identification problems, taking into consideration the effects of noisy and incomplete data, were studied: first, a 10-bar truss and second, a cracked free-free beam, both modeled with finite elements. In these cases, the damage location and extent were successfully determined. Finally, a non-linear oscillator (Duffing oscillator) was identified by PSOS providing good results. (C) 2009 Elsevier Ltd. All rights reserved
Resumo:
Five vegetable oils: canola, soybean, corn, cottonseed and sunflower oils were characterized with respect to their composition by gas chromatography and viscosity. The compositions of the vegetable oils suggest that they exhibit substantially different propensity for oxidation following the order of: canola < corn < cottonseed < sunflower approximate to soybean. Viscosities at 40 degrees C and 100 degrees C and the viscosity index (VI) values were determined for the vegetable oils and two petroleum oil quenchants: Microtemp 157 (a conventional slow oil) and Microtemp 153B (an accelerated or fast oil). The kinematic viscosities of the different vegetable and petroleum oils at 40 degrees C were similar. The VI values for the different vegetable oils were very close and varied between 209-220 and were all much higher than the VI values obtained for Microtemp 157 (96) and Microtemp 153B (121). These data indicate that the viscosity variations of these vegetable oils are substantially less sensitive to temperature variation than are the parafinic oil based Microtemp 157 and Microtemp 153B. Although these data suggest that any of the vegetable oils evaluated could be blended with minimal impact on viscosity, the oxidative stability would surely be substantially impacted. Cooling curve analysis was performed on these vegetable oils at 60 degrees C under non-agitated conditions. These results were compared with cooling curves obtained for Microtemp 157, a conventional, unaccelerated petroleum oil, and Microtemp 153B, an accelerated petroleum oil under the same conditions. The results showed that cooling profiles of the different vegetable oils were similar as expected from the VI values. However, no boiling was observed wit any of the vegetable oils and heat transfer occurs only by convection since there is no full-film boiling and nucleate boiling process as typically observed for petroleum oil quenchants, including those of this study. Therefore, high-temperature cooling is considerable faster for vegetable oils as a class. The cooling properties obtained suggest that vegetable oils would be especially suitable fur quenching low-hardenability steels such as carbon steels.
Resumo:
Multifunctional structures are pointed out as an important technology for the design of aircraft with volume, mass, and energy source limitations such as unmanned air vehicles (UAVs) and micro air vehicles (MAVs). In addition to its primary function of bearing aerodynamic loads, the wing/spar structure of an UAV or a MAV with embedded piezoceramics can provide an extra electrical energy source based on the concept of vibration energy harvesting to power small and wireless electronic components. Aeroelastic vibrations of a lifting surface can be converted into electricity using piezoelectric transduction. In this paper, frequency-domain piezoaeroelastic modeling and analysis of a canti-levered platelike wing with embedded piezoceramics is presented for energy harvesting. The electromechanical finite-element plate model is based on the thin-plate (Kirchhoff) assumptions while the unsteady aerodynamic model uses the doublet-lattice method. The electromechanical and aerodynamic models are combined to obtain the piezoaeroelastic equations, which are solved using a p-k scheme that accounts for the electromechanical coupling. The evolution of the aerodynamic damping and the frequency of each mode are obtained with changing airflow speed for a given electrical circuit. Expressions for piezoaeroelastically coupled frequency response functions (voltage, current, and electrical power as well the vibratory motion) are also defined by combining flow excitation with harmonic base excitation. Hence, piezoaeroelastic evolution can be investigated in frequency domain for different airflow speeds and electrical boundary conditions. [DOI:10.1115/1.4002785]
Resumo:
Austenitic stainless steels cannot be conventionally surface treated at temperatures close to 550 degrees C due to intense precipitation of nitrides or carbides. Plasma carburizing allows introducing carbon in the steel at temperatures below 500 degrees C without carbide precipitation. Plasma carburizing of AISI 316L was carried out at 480 degrees C and 400 degrees C, during 20 h, using CH(4) as carbon carrier gas. The results show that carbon expanded austenite (gamma(c)), 20 mu m in depth, was formed on the surface after the 480 degrees C treatment. Carbon expanded austenite (gamma(c)), 8 mu m in depth, was formed on the surface after the 400 degrees C treatment. DRX results showed that the austenitic FCC lattice parameter increases from 0.358 nm to 0.363 nm for the 400 degrees C treatment and to 0.369 nm for the 480 degrees C treatment, giving an estimation of circa 10 at.% carbon content for the latter. Lattice distortion, resulting from the expansion and the associated compressive residual stresses increases the surface hardness to 1040 HV(0.025). Micro-scale tensile tests were conducted on specimens prepared with the conditions selected above, which has indicated that the damage imposed to the expanded austenite layer was more easily related to each separated grain than to the overall macro-scale stresses imposed by the tensile test. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This article presents a systematic and logical study of the topology optimized design, microfabrication, and static/dynamic performance characterization of an electro-thermo-mechanical microgripper. The microgripper is designed using a topology optimization algorithm based on a spatial filtering technique and considering different penalization coefficients for different material properties during the optimization cycle. The microgripper design has a symmetric monolithic 2D structure which consists of a complex combination of rigid links integrating both the actuating and gripping mechanisms. The numerical simulation is performed by studying the effects of convective heat transfer, thermal boundary conditions at the fixed anchors, and microgripper performance considering temperature-dependent and independent material properties. The microgripper is fabricated from a 25 mm thick nickel foil using laser microfabrication technology and its static/dynamic performance is experimentally evaluated. The static and dynamic electro-mechanical characteristics are analyzed as step response functions with respect to tweezing/actuating displacements, applied current/power, and actual electric resistance. A microgripper prototype having overall dimensions of 1mm (L) X 2.5mm (W) is able to deliver the maximum tweezing and actuating displacements of 25.5 mm and 33.2 mm along X and Y axes, respectively, under an applied power of 2.32 W. Experimental performance is compared with finite element modeling simulation results.
Resumo:
Piezoresistive materials, materials whose resistivity properties change when subjected to mechanical stresses, are widely utilized in many industries as sensors, including pressure sensors, accelerometers, inclinometers, and load cells. Basic piezoresistive sensors consist of piezoresistive devices bonded to a flexible structure, such as a cantilever or a membrane, where the flexible structure transmits pressure, force, or inertial force due to acceleration, thereby causing a stress that changes the resistivity of the piezoresistive devices. By applying a voltage to a piezoresistive device, its resistivity can be measured and correlated with the amplitude of an applied pressure or force. The performance of a piezoresistive sensor is closely related to the design of its flexible structure. In this research, we propose a generic topology optimization formulation for the design of piezoresistive sensors where the primary aim is high response. First, the concept of topology optimization is briefly discussed. Next, design requirements are clarified, and corresponding objective functions and the optimization problem are formulated. An optimization algorithm is constructed based on these formulations. Finally, several design examples of piezoresistive sensors are presented to confirm the usefulness of the proposed method.
Resumo:
The paper discusses the effect of stress triaxiality on the onset and evolution of damage in ductile metals. A series of tests including shear tests and experiments oil smooth and pre-notched tension specimens wits carried Out for it wide range of stress triaxialities. The underlying continuum damage model is based oil kinematic definition of damage tensors. The modular structure of the approach is accomplished by the decomposition of strain rates into elastic, plastic and damage parts. Free energy functions with respect to fictitious undamaged configurations as well as damaged ones are introduced separately leading to elastic material laws which are affected by increasing damage. In addition, a macroscopic yield condition and a flow rule are used to adequately describe the plastic behavior. Numerical simulations of the experiments are performed and good correlation of tests and numerical results is achieved. Based oil experimental and numerical data the damage criterion formulated in stress space is quantified. Different branches of this function are taken into account corresponding to different damage modes depending oil stress triaxiality and Lode parameter. In addition, identification of material parameters is discussed ill detail. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Ti(6)Al(4)V thin films were grown by magnetron sputtering on a conventional austenitic stainless steel. Five deposition conditions varying both the deposition chamber pressure and the plasma power were studied. Highly textured thin films were obtained, their crystallite size (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
The present work reports the thermal annealing process, the number of layer and electrochemical process effect in the optical response quality of Bragg and microcavity devices that were applied as organic solvent sensors. These devices have been obtained by using porous silicon (PS) technology. The optical characterization of the Bragg reflector, before annealing, showed a broad photonic band-gap structure with blue shifted and narrowed after annealing process. The electrochemical process used to obtain the PS-based device imposes the limit in the number of layers because of the chemical dissolution effect. The interface roughness minimizations in the devices have been achieved by using the double electrochemical cell setup. The microcavity devices showed to have a good sensibility for organic solvent detection. The thermal annealed device showed better sensibility feature and this result was attributed to passivation of the surface devices. (c) 2007 Elsevier Ltd. All rights reserved.