991 resultados para Linear variable filters
Resumo:
This work deals with the numerical simulation of air stripping process for the pre-treatment of groundwater used in human consumption. The model established in steady state presents an exponential solution that is used, together with the Tau Method, to get a spectral approach of the solution of the system of partial differential equations associated to the model in transient state.
Resumo:
This paper is on the self-scheduling problem for a thermal power producer taking part in a pool-based electricity market as a price-taker, having bilateral contracts and emission-constrained. An approach based on stochastic mixed-integer linear programming approach is proposed for solving the self-scheduling problem. Uncertainty regarding electricity price is considered through a set of scenarios computed by simulation and scenario-reduction. Thermal units are modelled by variable costs, start-up costs and technical operating constraints, such as: forbidden operating zones, ramp up/down limits and minimum up/down time limits. A requirement on emission allowances to mitigate carbon footprint is modelled by a stochastic constraint. Supply functions for different emission allowance levels are accessed in order to establish the optimal bidding strategy. A case study is presented to illustrate the usefulness and the proficiency of the proposed approach in supporting biding strategies. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Energy efficiency plays an important role to the CO2 emissions reduction, combating climate change and improving the competitiveness of the economy. The problem presented here is related to the use of stand-alone diesel gen-sets and its high specific fuel consumptions when operates at low loads. The variable speed gen-set concept is explained as an energy-saving solution to improve this system efficiency. This paper details how an optimum fuel consumption trajectory based on experimentally Diesel engine power map is obtained.
Resumo:
The aim of this study is to evaluate lighting conditions and speleologists’ visual performance using optical filters when exposed to the lighting conditions of cave environments. A crosssectional study was conducted. Twenty-three speleologists were submitted to an evaluation of visual function in a clinical lab. An examination of visual acuity, contrast sensitivity, stereoacuity and flashlight illuminance levels was also performed in 16 of the 23 speleologists at two caves deprived of natural lightning. Two organic filters (450 nm and 550 nm) were used to compare visual function with and without filters. The mean age of the speleologists was 40.65 (± 10.93) years. We detected 26.1% participants with visual impairment of which refractive error (17.4%) was the major cause. In the cave environment the majority of the speleologists used a head flashlight with a mean illuminance of 451.0 ± 305.7 lux. Binocular visual acuity (BVA) was -0.05 ± 0.15 LogMAR (20/18). BVA for distance without filter was not statistically different from BVA with 550 nm or 450 nm filters (p = 0.093). Significant improved contrast sensitivity was observed with 450 nm filters for 6 cpd (p = 0.034) and 18 cpd (p = 0.026) spatial frequencies. There were no signs and symptoms of visual pathologies related to cave exposure. Illuminance levels were adequate to the majority of the activities performed. The enhancement in contrast sensitivity with filters could potentially improve tasks related with the activities performed in the cave.
Resumo:
The ecotoxicological response of the living organisms in an aquatic system depends on the physical, chemical and bacteriological variables, as well as the interactions between them. An important challenge to scientists is to understand the interaction and behaviour of factors involved in a multidimensional process such as the ecotoxicological response.With this aim, multiple linear regression (MLR) and principal component regression were applied to the ecotoxicity bioassay response of Chlorella vulgaris and Vibrio fischeri in water collected at seven sites of Leça river during five monitoring campaigns (February, May, June, August and September of 2006). The river water characterization included the analysis of 22 physicochemical and 3 microbiological parameters. The model that best fitted the data was MLR, which shows: (i) a negative correlation with dissolved organic carbon, zinc and manganese, and a positive one with turbidity and arsenic, regarding C. vulgaris toxic response; (ii) a negative correlation with conductivity and turbidity and a positive one with phosphorus, hardness, iron, mercury, arsenic and faecal coliforms, concerning V. fischeri toxic response. This integrated assessment may allow the evaluation of the effect of future pollution abatement measures over the water quality of Leça River.
Resumo:
The prediction of the time and the efficiency of the remediation of contaminated soils using soil vapor extraction remain a difficult challenge to the scientific community and consultants. This work reports the development of multiple linear regression and artificial neural network models to predict the remediation time and efficiency of soil vapor extractions performed in soils contaminated separately with benzene, toluene, ethylbenzene, xylene, trichloroethylene, and perchloroethylene. The results demonstrated that the artificial neural network approach presents better performances when compared with multiple linear regression models. The artificial neural network model allowed an accurate prediction of remediation time and efficiency based on only soil and pollutants characteristics, and consequently allowing a simple and quick previous evaluation of the process viability.
Resumo:
Dissertação de Mestrado apresentada ao Instituto de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Contabilidade e Finanças, sob orientação do Mestre Adalmiro Álvaro Malheiro de Castro Andrade Pereira.
Resumo:
Orientado pela Professora Doutora Maria Clara Ribeiro
Resumo:
This paper extents the by now classic sensor fusion complementary filter (CF) design, involving two sensors, to the case where three sensors that provide measurements in different bands are available. This paper shows that the use of classical CF techniques to tackle a generic three sensors fusion problem, based solely on their frequency domain characteristics, leads to a minimal realization, stable, sub-optimal solution, denoted as Complementary Filters3 (CF3). Then, a new approach for the estimation problem at hand is used, based on optimal linear Kalman filtering techniques. Moreover, the solution is shown to preserve the complementary property, i.e. the sum of the three transfer functions of the respective sensors add up to one, both in continuous and discrete time domains. This new class of filters are denoted as Complementary Kalman Filters3 (CKF3). The attitude estimation of a mobile robot is addressed, based on data from a rate gyroscope, a digital compass, and odometry. The experimental results obtained are reported.
Resumo:
Hyperspectral imaging can be used for object detection and for discriminating between different objects based on their spectral characteristics. One of the main problems of hyperspectral data analysis is the presence of mixed pixels, due to the low spatial resolution of such images. This means that several spectrally pure signatures (endmembers) are combined into the same mixed pixel. Linear spectral unmixing follows an unsupervised approach which aims at inferring pure spectral signatures and their material fractions at each pixel of the scene. The huge data volumes acquired by such sensors put stringent requirements on processing and unmixing methods. This paper proposes an efficient implementation of a unsupervised linear unmixing method on GPUs using CUDA. The method finds the smallest simplex by solving a sequence of nonsmooth convex subproblems using variable splitting to obtain a constraint formulation, and then applying an augmented Lagrangian technique. The parallel implementation of SISAL presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory. The results herein presented indicate that the GPU implementation can significantly accelerate the method's execution over big datasets while maintaining the methods accuracy.
Resumo:
Dissertação de Mestrado apresentado ao Instituto de Contabilidade e Administração do Porto para a obtenção do grau de Mestre em Contabilidade e Finanças, sob orientação de Mestre Adalmiro Álvaro Malheiro de Castro Andrade Pereira
Resumo:
In hyperspectral imagery a pixel typically consists mixture of spectral signatures of reference substances, also called endmembers. Linear spectral mixture analysis, or linear unmixing, aims at estimating the number of endmembers, their spectral signatures, and their abundance fractions. This paper proposes a framework for hyperpsectral unmixing. A blind method (SISAL) is used for the estimation of the unknown endmember signature and their abundance fractions. This method solve a non-convex problem by a sequence of augmented Lagrangian optimizations, where the positivity constraints, forcing the spectral vectors to belong to the convex hull of the endmember signatures, are replaced by soft constraints. The proposed framework simultaneously estimates the number of endmembers present in the hyperspectral image by an algorithm based on the minimum description length (MDL) principle. Experimental results on both synthetic and real hyperspectral data demonstrate the effectiveness of the proposed algorithm.
Resumo:
Em Angola, apenas cerca de 30% da população tem acesso à energia elétrica, nível que decresce para valores inferiores a 10% em zonas rurais mais remotas. Este problema é agravado pelo facto de, na maioria dos casos, as infraestruturas existentes se encontrarem danificadas ou não acompanharem o desenvolvimento da região. Em particular na capital angolana, Luanda que, sendo a menor província de Angola, é a que regista atualmente a maior densidade populacional. Com uma população de cerca de 5 milhões de habitantes, não só há frequentemente problemas relacionados com a falha do fornecimento de energia elétrica como há ainda uma percentagem considerável de municípios onde a rede elétrica ainda nem sequer chegou. O governo de Angola, no seu esforço de crescimento e aproveitamento das suas enormes potencialidades, definiu o setor energético como um dos fatores críticos para o desenvolvimento sustentável do país, tendo assumido que este é um dos eixos prioritários até 2016. Existem objetivos claros quanto à reabilitação e expansão das infraestruturas do setor elétrico, aumentando a capacidade instalada do país e criando uma rede nacional adequada, com o intuito não só de melhorar a qualidade e fiabilidade da rede já existente como de a aumentar. Este trabalho de dissertação consistiu no levantamento de dados reais relativamente à rede de distribuição de energia elétrica de Luanda, na análise e planeamento do que é mais premente fazer relativamente à sua expansão, na escolha dos locais onde é viável localizar novas subestações, na modelação adequada do problema real e na proposta de uma solução ótima para a expansão da rede existente. Depois de analisados diferentes modelos matemáticos aplicados ao problema de expansão de redes de distribuição de energia elétrica encontrados na literatura, optou-se por um modelo de programação linear inteira mista (PLIM) que se mostrou adequado. Desenvolvido o modelo do problema, o mesmo foi resolvido por recurso a software de otimização Analytic Solver e CPLEX. Como forma de validação dos resultados obtidos, foi implementada a solução de rede no simulador PowerWorld 8.0 OPF, software este que permite a simulação da operação do sistema de trânsito de potências.
Resumo:
Neste relatório apresentam-se resultados de um estudo estatístico que procura contribuir para um melhor entendimento da problemática inerente à liberalização do setor elétrico em Portugal e dos desafios que esta liberalização, existente desde meados de 2007, trás aos seus intervenientes. Iniciam-se os trabalhos com um estudo que pretende avaliar a existência de relação entre o Preço de Mercado da eletricidade e um conjunto de variáveis potencialmente explicativas/condicionantes do Preço de Mercado. Neste estudo consideram-se duas abordagens. A primeira usa a função de correlação cruzada para avaliar a existência de relação do tipo linear entre pares de variáveis. A segunda considera o teste causalidade de Granger na avaliação de uma relação de causa e efeito entre esses pares. Este estudo avaliou a relação entre o Preço de Mercado da eletricidade e 19 variáveis ditas condicionantes distribuídas por três categorias distintas (consumo e produção de eletricidade; indicadores climáticos; e energias primárias). O intervalo de tempo em estudo cinge-se ao biénio 2012-2103. Durante este período avaliam-se as relações entre as variáveis em diversos sub-períodos de tempo em ciclos de consumo representativos do consumo em baixa (fim de semana) e de consumo mais elevado (fora de vazio) com os valores observados de cada uma das variáveis tratados com uma base horária e diária (média). Os resultados obtidos mostram a existência relação linear entre algumas das variáveis em estudo e o preço da eletricidade em regime de mercado liberalizado, mas raramente é possível identificar precedência temporal entre as variáveis. Considerando os resultados da análise de correlação e causalidade, apresenta-se ainda um modelo de previsão do Preço de Mercado para o curto e médio prazo em horas de período fora de vazio.
Resumo:
O processo de liberalização do setor elétrico em Portugal Continental seguiu uma metodologia idêntica à da maior parte dos países europeus, tendo a abertura de mercado sido efetuada de forma progressiva. Assim, no âmbito do acompanhamento do setor elétrico nacional, reveste-se de particular interesse caracterizar a evolução mais recente do mercado liberalizado, nomeadamente em relação ao preço da energia elétrica. A previsão do preço da energia elétrica é uma questão muito importante para todos os participantes do mercado de energia elétrica. Como se trata de um assunto de grande importância, a previsão do preço da energia elétrica tem sido alvo de diversos estudos e diversas metodologias têm sido propostas. Esta questão é abordada na presente dissertação recorrendo a técnicas de previsão, nomeadamente a métodos baseados no histórico da variável em estudo. As previsões são, segundo alguns especialistas, um dos inputs essenciais que os gestores desenvolvem para ajudar no processo de decisão. Virtualmente cada decisão relevante ao nível das operações depende de uma previsão. Para a realização do modelo de previsão de preço da energia elétrica foram utilizados os modelos Autorregressivos Integrados de Médias Móveis, Autoregressive / Integrated / Moving Average (ARIMA), que geram previsões através da informação contida na própria série temporal. Como se pretende avaliar a estrutura do preço da energia elétrica do mercado de energia, é importante identificar, deste conjunto de variáveis, quais as que estão mais relacionados com o preço. Neste sentido, é realizada em paralelo uma análise exploratória, através da correlação entre o preço da energia elétrica e outras variáveis de estudo, utilizando para esse efeito o coeficiente de correlação de Pearson. O coeficiente de correlação de Pearson é uma medida do grau e da direção de relação linear entre duas variáveis quantitativas. O modelo desenvolvido foi aplicado tendo por base o histórico de preço da eletricidade desde o inicio do mercado liberalizado e de modo a obter as previsões diária, mensal e anual do preço da eletricidade. A metodologia desenvolvida demonstrou ser eficiente na obtenção das soluções e ser suficientemente rápida para prever o valor do preço da energia elétrica em poucos segundos, servindo de apoio à decisão em ambiente de mercado.