985 resultados para Jordan, Camille, 1771-1821.
Resumo:
This article considers ideas about the suitability of experimental, non-naturalist, narrative forms in theatre and television, through the example of a 1965 BBC2 adaptation of J. B. Priestley's 1939 play Johnson over Jordan. Using both textual analysis of the programme and research into the BBC production documentation, this essay explains how the circumstances and conditions of 1960s television adaptation and the star casting of Sir Ralph Richardson transformed Priestley's stage play. The TV adaptation achieved cosmic effects on an intimate scale, through inference and the imaginative integration of the studio space with dubbed sound.
Resumo:
The Pre-Pottery Neolithic A (PPNA) period in Southwest Asia is essential for our understanding of the transition to sedentary, agricultural communities. Developments in architecture are key to understanding this transition, but many aspects of PPNA architecture remain elusive, such as construction techniques, the selection of building materials, and the functional use of space. The primary aim of the research described within this contribution was to build a PPNA-like structure in order to answer questions about PPNA architecture in general, while specifically addressing issues raised by the excavation of structures at the site of WF16, Southern Jordan. The second aim was to display a ‘PPNA’ building to visitors in Wadi Faynan to enhance their understanding of the period. The experimental construction based on one of the WF16 structures showed that 1) required materials can be acquired locally; 2) a construction technique using mud layers as described in this paper was likely used; 3) flat, or very slightly dome-shaped, roofs are functional and can also be used as a solid working platform; 4) the WF16 small semi-subterranean buildings appear inappropriate for housing a nuclear family unit.
Resumo:
We explicitly construct simple, piecewise minimizing geodesic, arbitrarily fine interpolation of simple and Jordan curves on a Riemannian manifold. In particular, a finite sequence of partition points can be specified in advance to be included in our construction. Then we present two applications of our main results: the generalized Green’s theorem and the uniqueness of signature for planar Jordan curves with finite p -variation for 1⩽p<2.
Resumo:
Carbon and nitrogen stable isotope ratios of 45 human and 23 faunal bone collagen samples were measured to study human diet and the management of domestic herbivores in past Jordan, contrasting skeletal remains from the Middle and Late Bronze Age and the Late Roman and Byzantine periods from the site of Ya'amūn near Irbid. The isotope data demonstrate that the management of the sheep and goats changed over time, with the earlier animals consuming more plants from semi-arid habitats, possibly because of transhumant herding strategies. The isotope data for fish presented here are the first from archaeological contexts from the Southern Levant. Although fish of diverse provenance was available at the site, human diet was predominately based on terrestrial resources and there was little dietary variability within each time-period. Isotopic variation between humans from different time-periods can mostly be explained by ‘baseline shifts’ in the available food sources; however, it is suggested that legumes may have played a more significant role in Middle and Late Bronze Age diet than later on.
Resumo:
In this paper we apply the method of functional identities to the study of group gradings by an abelian group G on simple Jordan algebras, under very mild restrictions on the grading group or the base field of coefficients.
Resumo:
The problem of classification of Jordan bit-nodules over (non-semisimple) finite dimensional Jordan algebras with respect to their representation type is considered. The notions of diagram of a Jordan algebra and of Jordan tensor algebra of a bimodule are introduced and a mapping Qui is constructed which associates to the diagram of a Jordan algebra J the quiver of its universal associative enveloping algebra S(J). The main results are concerned with Jordan algebras of semi-matrix type, that is, algebras whose semi-simple component is a direct sum of Jordan matrix algebras. In this case, criterion of finiteness and tameness for one-sided representations are obtained, in terms of diagram and mapping Qui, for Jordan tensor algebras and for algebras with radical square equals to 0. (c) 2010 Elsevier Inc. All rights reserved.
Resumo:
We prove a coordinatization theorem for noncommutative Jordan superalgebras of degree n > 2, describing such algebras. It is shown that the symmetrized Jordan superalgebra for a simple finite-dimensional noncommutative Jordan superalgebra of characteristic 0 and degree n > 1 is simple. Modulo a ""nodal"" case, we classify central simple finite-dimensional noncommutative Jordan superalgebras of characteristic 0.
Resumo:
We discuss an algebraic theory for generalized Jordan chains and partial signatures, that are invariants associated to sequences of symmetric bilinear forms on a vector space. We introduce an intrinsic notion of partial signatures in the Lagrangian Grassmannian of a symplectic space that does not use local coordinates, and we give a formula for the Maslov index of arbitrary real analytic paths in terms of partial signatures.
Resumo:
We consider polynomial identities satisfied by nonhomogeneous subalgebras of Lie and special Jordan superalgebras: we ignore the grading and regard the superalgebra as an ordinary algebra. The Lie case has been studied by Volichenko and Baranov: they found identities in degrees 3, 4 and 5 which imply all the identities in degrees <= 6. We simplify their identities in degree 5, and show that there are no new identities in degree 7. The Jordan case has not previously been studied: we find identities in degrees 3, 4, 5 and 6 which imply all the identities in degrees <= 6, and demonstrate the existence of further new identities in degree 7. our proofs depend on computer algebra: we use the representation theory of the symmetric group, the Hermite normal form of an integer matrix, the LLL algorithm for lattice basis reduction, and the Chinese remainder theorem. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
All the demonstrations known to this author of the existence of the Jordan Canonical Form are somewhat complex - usually invoking the use of new spaces, and what not. These demonstrations are usually too difficult for an average Mathematics student to understand how he or she can obtain the Jordan Canonical Form for any square matrix. The method here proposed not only demonstrates the existence of such forms but, additionally, shows how to find them in a step by step manner. I do not claim that the following demonstration is in any way “elegant” (by the standards of elegance in fashion nowadays among mathematicians) but merely simple (undergraduate students taking a fist course in Matrix Algebra would understand how it works).
Resumo:
O gênero Myotis possui mais de 80 espécies distribuídas globalmente. Estas espécies são morfologicamente muito semelhantes e raramente refletem especialização. Consequentemente, sua identificação é dificultada e conduz à complexidade taxonômica do grupo. O gênero teve incontestável sucesso evolutivo e seus representantes podem ser encontrados em todos os continentes (exceção da Antártica), de habitats semidesérticos a regiões subantárticas. A espécie M. nigricans distribui-se na Região Neotropical, ocorrendo desde o sul do México até o sul do Brasil e norte do Peru, Bolívia e Argentina. Suas características morfológicas, contudo, parecem não estar bem definidas. Informações sobre dimorfismo sexual e variação geográfica pouco foram abordados para M. nigricans no Brasil. Destaca-se, ainda, que M. nigricans frequentemente é confundida com outra espécie do gênero: M. riparia.Essas questões enfatizam ainda mais a problemática taxonômica do grupo. Com o objetivo de avaliar a existência de dimorfismo sexual e variação geográfica no tamanho e na forma do crânio de M. nigricans de duas áreas geográficas brasileiras, foram realizadas análises morfológicas através das técnicas de morfometria tradicional e geométrica. Examinaram-se 131 espécimes adultos de Myotis nigricans provenientes de duas áreas geográficas do Brasil: Ceará e Sul do Brasil (Paraná, Santa Catarina e Rio Grande do Sul). Para a análise da morfometria tradicional foram realizadas dez medidas cranianas e, adicionalmente, foi realizada a medida do antebraço. Para a análise da morfometria geométrica foram definidos 30 marcos anatômicos nas vistas lateral e palatal do crânio de M. nigricans. O dimorfismo sexual foi analisado apenas para os espécimes do Sul do Brasil e a variação geográfica apenas para as fêmeas, devido ao pequeno número de exemplares machos provenientes da região do Ceará, depositado nas instituições consultadas. As análises da morfometria tradicional e geométrica evidenciaram a presença de dimorfismo sexual unicamente em relação ao tamanho. Em todas as análises, as fêmeas foram maiores que os machos. Não foram verificadas diferenças na forma do crânio entre machos e fêmeas, uma vez que as análises das deformações parciais e relativas não evidenciaram diferenças entre os sexos. Foi verificada a existência de variação geográfica no tamanho e na forma das estruturas estudadas. Os espécimes do Sul do Brasil foram maiores que os espécimes do Ceará. A análise da morfometria geométrica indicou a formação de dois grupos que correspondem às duas áreas geográficas. Foram geradas grades de deformação que exibem claramente as variações na forma do crânio. Os resultados obtidos neste estudo contribuem para o conhecimento da morfologia de M. nigricans e podem, ainda, fornecer auxílio em relação à taxonomia das espécies de Myotis no Brasil.