990 resultados para Ion Semiconductor Sequencing


Relevância:

20.00% 20.00%

Publicador:

Resumo:

New protonated layered oxides, HMWO6·1.5H2O (M=Nb or Ta), have been synthesized by topotactic exchange of lithium in trirutile LiMWO6 with protons by treatment with dilute HNO3. The tetragonal cell constants are a=4.71 (2) and c=25.70 (8)Å for HNbWO6·1.5H2O and a=4.70 (2) and c=25.75 (9) Å for HTaWO6·1.5H2O. Partially hydrated compounds, HMWO6·0.5H2O and anhydrous compounds, HMWO6 retain the layered structure. The structure of these oxides consists of MWO6 sheets built up of M/W-oxygen octahedra with rutile type corner- and edge-sharing. Interlayer protons in HMWO6 are exchanged with Li+, Na+, K+ and Tl+. HMWO6 exhibit Brønsted acidity intercalating n-alkylamines and pyridine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the variations in impedance with frequency of metal‐oxide‐semiconductor (MOS) structures on polycrystalline silicon. The origin of these impedance‐frequency characteristics are qualitatively explained. These characteristics indicate that the MOS structure on polycrystalline silicon can be exploited to realize voltage controlled filters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The growing interest for sequencing with higher throughput in the last decade has led to the development of new sequencing applications. This thesis concentrates on optimizing DNA library preparation for Illumina Genome Analyzer II sequencer. The library preparation steps that were optimized include fragmentation, PCR purification and quantification. DNA fragmentation was performed with focused sonication in different concentrations and durations. Two column based PCR purification method, gel matrix method and magnetic bead based method were compared. Quantitative PCR and gel electrophoresis in a chip were compared for DNA quantification. The magnetic bead purification was found to be the most efficient and flexible purification method. The fragmentation protocol was changed to produce longer fragments to be compatible with longer sequencing reads. Quantitative PCR correlates better with the cluster number and should thus be considered to be the default quantification method for sequencing. As a result of this study more data have been acquired from sequencing with lower costs and troubleshooting has become easier as qualification steps have been added to the protocol. New sequencing instruments and applications will create a demand for further optimizations in future.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerosol particles play an important role in the Earth s atmosphere and in the climate system: they scatter and absorb solar radiation, facilitate chemical processes, and serve as seeds for cloud formation. Secondary new particle formation (NPF) is a globally important source of these particles. Currently, the mechanisms of particle formation and the vapors participating in this process are, however, not truly understood. In order to fully explain atmospheric NPF and subsequent growth, we need to measure directly the very initial steps of the formation processes. This thesis investigates the possibility to study atmospheric particle formation using a recently developed Neutral cluster and Air Ion Spectrometer (NAIS). First, the NAIS was calibrated and intercompared, and found to be in good agreement with the reference instruments both in the laboratory and in the field. It was concluded that NAIS can be reliably used to measure small atmospheric ions and particles directly at the sizes where NPF begins. Second, several NAIS systems were deployed simultaneously at 12 European measurement sites to quantify the spatial and temporal distribution of particle formation events. The sites represented a variety of geographical and atmospheric conditions. The NPF events were detected using NAIS systems at all of the sites during the year-long measurement period. Various particle formation characteristics, such as formation and growth rates, were used as indicators of the relevant processes and participating compounds in the initial formation. In a case of parallel ion and neutral cluster measurements, we also estimated the relative contribution of ion-induced and neutral nucleation to the total particle formation. At most sites, the particle growth rate increased with the increasing particle size indicating that different condensing vapors are participating in the growth of different-sized particles. The results suggest that, in addition to sulfuric acid, organic vapors contribute to the initial steps of NPF and to the subsequent growth, not just later steps of the particle growth. As a significant new result, we found out that the total particle formation rate varied much more between the different sites than the formation rate of charged particles. The results infer that the ion-induced nucleation has a minor contribution to particle formation in the boundary layer in most of the environments. These results give tools to better quantify the aerosol source provided by secondary NPF in various environments. The particle formation characteristics determined in this thesis can be used in global models to assess NPF s climatic effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Semiconductor-Metal transitions in Ti2O3, VO2, V2O3 and Ti3O5 have been investigated employing X-ray and UV Photoelectron spectroscopy. The transitions are accompanied by significant changes in the 3d band of the transition metals as well as some of the core levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Floating in the air that surrounds us is a number of small particles, invisible to the human eye. The mixture of air and particles, liquid or solid, is called an aerosol. Aerosols have significant effects on air quality, visibility and health, and on the Earth's climate. Their effect on the Earth's climate is the least understood of climatically relevant effects. They can scatter the incoming radiation from the Sun, or they can act as seeds onto which cloud droplets are formed. Aerosol particles are created directly, by human activity or natural reasons such as breaking ocean waves or sandstorms. They can also be created indirectly as vapors or very small particles are emitted into the atmosphere and they combine to form small particles that later grow to reach climatically or health relevant sizes. The mechanisms through which those particles are formed is still under scientific discussion, even though this knowledge is crucial to make air quality or climate predictions, or to understand how aerosols will influence and will be influenced by the climate's feedback loops. One of the proposed mechanisms responsible for new particle formation is ion-induced nucleation. This mechanism is based on the idea that newly formed particles were ultimately formed around an electric charge. The amount of available charges in the atmosphere varies depending on radon concentrations in the soil and in the air, as well as incoming ionizing radiation from outer space. In this thesis, ion-induced nucleation is investigated through long-term measurements in two different environments: in the background site of Hyytiälä and in the urban site that is Helsinki. The main conclusion of this thesis is that ion-induced nucleation generally plays a minor role in new particle formation. The fraction of particles formed varies from day to day and from place to place. The relative importance of ion-induced nucleation, i.e. the fraction of particles formed through ion-induced nucleation, is bigger in cleaner areas where the absolute number of particles formed is smaller. Moreover, ion-induced nucleation contributes to a bigger fraction of particles on warmer days, when the sulfuric acid and water vapor saturation ratios are lower. This analysis will help to understand the feedbacks associated with climate change.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study we present approximate analytical expressions for estimating the variation in multipole expansion coefficients as a function of the size of the apertures in the electrodes in axially symmetric (3D) and two-dimensional (2D) ion trap ion traps. Following the approach adopted in our earlier studies which focused on the role of apertures to fields within the traps, here too, the analytical expression we develop is a sum of two terms, A(n,noAperiure), the multipole expansion coefficient for a trap with no apertures and A(n,dueToAperture), the multipole expansion coefficient contributed by the aperture. A(n,noAperture) has been obtained numerically and A(n,dueToAperture) is obtained from the n th derivative of the potential within the trap. The expressions derived have been tested on two 3D geometries and two 2D geometries. These include the quadrupole ion trap (QIT) and the cylindrical ion trap (CIT) for 3D geometries and the linear ion trap (LIT) and the rectilinear ion trap (RIT) for the 2D geometries. Multipole expansion coefficients A(2) to A(12), estimated by our analytical expressions, were compared with the values obtained numerically (using the boundary element method) for aperture sizes varying up to 50% of the trap dimension. In all the plots presented, it is observed that our analytical expression for the variation of multipole expansion coefficients versus aperture size closely follows the trend of the numerical evaluations for the range of aperture sizes considered. The maximum relative percentage errors, which provide an estimate of the deviation of our values from those obtained numerically for each multipole expansion coefficient, are seen to be largely in the range of 10-15%. The leading multipole expansion coefficient, A(2), however, is seen to be estimated very well by our expressions, with most values being within 1% of the numerically determined values, with larger deviations seen for the QIT and the LIT for large aperture sizes. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oxygen storage/release (OSC) capacity is an important feature common to all three-way catalysts to combat harmful exhaust emissions. To understand the mechanism of improved OSC for doped CeO2, we undertook the structural investigation by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), H-2-TPR (temperature-programmed hydrogen reduction) and density functional theoretical (DFT) calculations of transition-metal-, noble-metal-, and rare-earth (RE)-ion-substituted ceria. In this report, we present the relationship between the OSC and structural changes induced by the dopant ion in CeO2. Transition metal and noble metal ion substitution in ceria greatly enhances the reducibility of Ce1-xMxO2-delta (M = Mn, Fe, Co, Ni, Cu, Pd, Pt, Ru), whereas rare-earth-ion-substituted Ce(1-x)A(x)O(2-delta) (A = La, Y) have very little effect in improving the OSC. Our simulated optimized structure shows deviation in cation oxygen bond length from ideal bond length of 2.34 angstrom (for CeO2). For example, our theoretical calculation for Ce28Mn4O62 structure shows that Mn-O bonds are in 4 + 2 coordination with average bond lengths of 2.0 and 3.06 angstrom respectively. Although the four short Mn-O bond lengths spans the bond distance region of Mn2O3, the other two Mn-O bonds are moved to longer distances. The dopant transition and noble metal ions also affects Ce coordination shell and results in the formation of longer Ce-O bonds as well. Thus longer cation oxygen bonds for both dopant and host ions results in enhanced synergistic reduction of the solid solution. With Pd ion substitution in Ce1-xMxO2-delta (M = Mn, Fe, Co, Ni, Cu) further enhancement in OSC is observed in H-2-TPR. This effect is reflected in our model calculations by the presence of still longer bonds compared to the model without Pd ion doping. The synergistic effect is therefore due to enhanced reducibility of both dopant and host ion induced due to structural distortion of fluorite lattice in presence of dopant ion. For RE ions (RE = Y, La), our calculations show very little deviation of bonds lengths from ideal fluorite structure. The absence of longer Y-O/La-O and Ce-O bonds make the structure much less susceptible to reduction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of hybrid arrays of cadmium selenide quantum dots and polymer grafted gold nanoparticles have been prepared using a BCP template. Controlling the dispersion and location of the respective nanoparticles allows us to tune the exciton-plasmon interaction in such hybrid arrays and hence control their optical properties. The observed photoluminescence of the hybrid array films is interpreted in terms of the dispersion and location of the gold nanoparticles and quantum dots in the block copolymer matrix.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ion implantation systems, used for producing high-current ion beams, employ wide-beam ion sources which are rotated through 90 degrees . These sources need mass analyser optics which are different from the conventional design. The authors present results of calculation of the image distance as a function of entrance and exit angles of a sector magnet mass analyser having such a source. These computations have been performed for the magnetic deflection angles 45 degrees , 60 degrees and 90 degrees . The details of the computations carried out using the computer program MODBEAM, developed for this purpose, are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ion energy distribution of inductively coupled plasma ion source for focused ion beam application is measured using a four grid retarding field energy analyzer. Without using any Faraday shield, ion energy spread is found to be 50 eV or more. Moreover, the ion energy distribution is found to have double peaks showing that the power coupling to the plasma is not purely inductive, but a strong parasitic capacitive coupling is also present. By optimizing the various source parameters and Faraday shield, ion energy distribution having a single peak, well separated from zero energy and with ion energy spread of 4 eV is achieved. A novel plasma chamber, with proper Faraday shield is designed to ignite the plasma at low RF powers which otherwise would require 300-400 W of RF power. Optimization of various parameters of the ion source to achieve ions with very low energy spread and the experimental results are presented in this article. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among the various cathode materials studied for Li-ion batteries over the past many years, spinet LiMn2O4 is found to be one of the most attractive materials. Nanoparticles of the electrode materials sustain high rate capability due to large surface to volume ratio and small diffusion path length. Nanoparticles of spinel LiMn2O4 have been synthesized by microwave hydrothermal technique using prior synthesized amorphous MnO2 and LiOH. The phase and purity of spinel LiMn2O4 are confirmed by powder X-ray diffraction. The morphological studies have been investigated using field emission scanning electron microscopy and high-resolution transmission electron microscopy. The electrochemical performances of the material for Li insertion/extraction are evaluated by cyclic voltammetry, galvanostatic charge-discharge cycling and AC impedance studies. The initial discharge capacity is found to be about 89 mAh g(-1) at current density of 21 mA g(-1). (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Following growth doping strategy and using dopant oxides nanocrystals as dopant sources, we report here two different transition-metal ions doped in a variety of group II-VI semiconductor nanocrystals. Using manganese oxide and copper oxide nanocrystals as corresponding dopant sources, intense photoluminescence emission over a wide range of wavelength has been observed for different host nanocrystals. Interestingly, this single doping strategy is successful in providing such highly emissive nanocrystals considered here, in contrast with the literature reports that would suggest synthesis strategies to be highly specific to the particular dopant, host, or both. We investigate and discuss the possible mechanism of the doping process, supporting the migration of dopant ions from dopant oxide nanocrystals to host nanocrystals as the most likely scenario.